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Abstract

Genetic algorithms (GA) are highly parallelizable, robust semi-optimization algorithms of

polynomial algorithmic time complexity. GAs are inspired by and modeled after the processes

of natural selection. The most commonly implemented GAs are "simple" GAs, which use three

standard genetic operators. Reproduction, crossover, and mutation operate on populations of

strings, each of which represents a solution to a domain problem. Deceptive and GA-hard problems

are provably difficult for simple GAs due to the presence of misleading building blocks and long

building block defining lengths. Messy GAs (MGA) are designed specifically to overcome the

limitations associated with deception and defining length. Reported MGAs have been applied to

a number of functional optimization problems, and researchers have suggested application of the

MGA to combinatoric optimization problems. This study extends AFIT's existing GA capabilities

by generalizing the MGA to solve combinatoric optimization problems.

The performance of the generalized MGA is compared to that of AFIT's original MGA,

the GENESIS simple GA, and the permutation version of GENESIS using three problems. In

an application to a fully deceptive binary function optimization problem the generalized MGA

consistently obtains better solutions than the simple GA. In an application to an NP-complete

permutation problem, the generalized MGA again consistently obtains better solutions than the

other three GAs. In an application to DeJong function f2, the generalized MGA obtains better

solutions than the original MGA, but not as good as the simple GA.

AFIT's initial parallel implementation of the MGA obtained speedup by distributing mem-

bers of the initial population to processors using an interleaving strategy. This study compares

the solution quality and execution time obtained using interleaving and three other distribution

strategies. Distribution strategy is not found to significantly affect solution quality. The indexed,

modified indexed, and block distribution strategies all obtain "super-linear speedup" of the primor-

dial phase, indicating that the efficiency of the sequential algorithm can be improved.

Population partitioning in parallel genetic algorithms requires design decisions concerning

implementation of the selection and crossover operators. Experiments are performed comparing

the solution quality, execution time, and convergence characteristics of three selection algorithms

and three approximations to global crossover.

xv



Generalization and Parallelization of Messy Genetic Algorithms

and

Communication in Parallel Genetic Algorithms

I. Introduction.

A large class of important problems cannot be solved to optimality within acceptable

amounts of time using currently available methods. Advances in computer hardware design

continue to extend the usefulness of these methods, but there is a limit. In order to fully

address the problem, hardware advances must be accompanied by algorithmic advances.

This thesis investigation explores the abilities of genetic algorithms to solve difficult and

important problems for which no satisfactory methods have been identified.

This chapter describes the general issue motivating this thesis effort and introduces

the basic concepts upon which it is founded. Limitations of current and foreseeable comput-

ers (Section 1.1), the notion of search (Section 1.3) the fundamentals of parallel computing

(Section 1.2, and the general problem addressed (Section 1.4) are discussed. The remain-

der of the chapter presents the specific research objectives (Section 1.5), the assumptions

regarding future advances in computing performance and readership requirements (Sec-

tion 1.6), current knowledge (Section 1.8), and the general approach taken (Section 1.9).

The organization of the remaining chapters is presented in Section 1.10.

1.1 Limitations of Computing Capabilities.

One difficulty with many optimization algorithms is that the execution time grows as

an exponential function of the problem size. The limitations imposed by the so-called com-

binatoric explosion cannot be significantly lessened by future advances in computer hard-

ware design, because even a thousandfold increase in hardware performance only slightly

increases the size of problems which can be solved within practical time constraints. Fig-

ure 1 illustrates this concept.

I
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Figure 1. Theoretical Computation Times for an Exponential Complexity Algorithm on
a GigaFLOP and a TeraFLOP Computer

One way to reduce the required execution time, and thereby increase practical prob-

lem sizes, is to accept near or approximately optimal solutions. Such a solution is often

referred to as semi-optimal. Likewise, problems for which semi-optimal solutions are ac-

ceptable are referred to as semi-optimization problems. In most cases, it is possible to

arrive at a semi-optimal solution in a much shorter amount of time. Figure 2 shows the-

oretical problem sizes for example exponential and polynomial time complexity problems

on a TeraFLOP computer'. In order to fully exploit future hardware advances, future

applications must exploit algorithms for which the execution time grows as a polynomial

function of the problem size.

1.2 Parallel Computing.

Technology breakthroughs such as vacuum tubes, transistors, integrated circuits,

and Very Large Scale Integration (VLSI) have had enormous impacts on computing per-

formance. Optical computing promises to have an equivalent impact. Unfortunately,

according to DeCegama, "computers are approaching a fundamental physical limit ... [and]

'A TeraFLOP computer is a computer capable of performing one trillion floating point operations per

second. At the time of writing, no TeraFLOP computer exists.

2
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Figure 2. Theoretical Computation Times for Exponential and Polynomial Complexity

Algorithms on a TeraFLOP Computer

sequential processors will reach the maximum speed physically possible in the near fu-

ture" (12:2). Consequently, increased computing performance demands parallel computer

architectures.

Several forms of parallelism exist which can lead to performance improvements when

algorithms are implemented in parallel, including data parallelism, control parallelism, and

trivial parallelism. These properties are discussed in Chapter II. The properties which

can be most profitably exploited depend upon both the algorithm and/or application in

question, and the target architecture.

A wide variety of parallel computer architectures have been designed and imple-

mented. High level design options include shared/individual instruction and data streams,

synchronous/ asynchronous processing, ratios of individual processor speed to communica-

tion speed and processor memory size, local/global memory access, and processor inter-

connection topology. No single architecture has been shown to be clearly superior for al

applications.

03



1.3 Search Algorithms.

Many problems can be posed as search problems, in which an algorithm examines

the space of candidate solutions seeking points which satisfy domain specific criteria. One

broad class of problems fitting this category is combinatoric optimization. An example of

such a problem is the classic Traveling Salesman Problem (TSP), the objective of which

is to construct a "tour" from a list of cities such that every city is visited exactly once

and the total distance traveled is minimized. Many algorithms exist which solve these

problems. Well known search algorithms which are often applied to combinatoric opti-

mization problems include depth first, breadth first, best first, A*, branch-and-bound, hill

climbing, and simulated annealing. Some are more efficient, some give solutions closer

to the global optimum, and some are more widely applicable. The qualitative ability of

an algorithm to perform well across a broad spectrum of problem domains is sometimes

referred to as robustness, which Goldberg defines as "the balance between efficiency and

efficacy." (21:1-10)

Another class of problems which can be described in terms of search is function

optimization. For example, the problem of finding the roots of a function can be thought

of as searching through the real numbers (the problem space) for points at which the

value of the function is zero. Many numerical search algorithms exist which solve such

problems, each of which has its own strengths and weaknesses. Some are more efficient than

others, but are accurate only when applied to "well-behaved," continuous, or differentiable

functions. Others are widely applicable or very accurate, but less efficient.

1.4 Problem.

Current and future challenges in computational science demand the application algo-

rithms which are capable of fully exploiting the supercomputer architectures of the future.

This implies polynomial complexity, highly parallelizable, robust algorithms.

Genetic algorithms (GA) solve semi-optimization problems, and exhibit all the above

characteristics. GAs find applications in functional optimization, combinatoric optimiza-

4



tion, machine learning, and many other areas2 . A recent variation of the GA, called the

messy genetic algorithm (MGA) provides an even greater range of applicability.

A Genetic Algorithm Toolbox is being developed at AFIT to explore the capabilities

of genetic algorithms. The toolbox has a sequential version implemented on the Sun 4

workstation, and a parallel version implemented on the Intel iPSC/2 and iPSC/860 Hy-

percubes. To date, functional optimization applications of both the standard and messy

genetic algorithms have been parallelized (14, 52) (See Figure 3). The goal is a robust

package capable of accurate and efficient performance on both functional and combina-

toric optimization problems. This investigation enhances the capabilities of the Genetic

Algorithm Toolbox by generalizing the messy genetic algorithm to solve combinatoric opti-

mization problems. It also provides additional insight into effective and efficient application

and parallelization of messy genetic algorithms.

1.5 Objectives.

The research objectives of this thesis are to:

1. Investigate the ability of messy genetic algorithms to solve difficult combinatoric

and functional optimization problems to global optimality. Goldberg has stated that

"messy genetic algorithms now appear capable of solving many difficult combinatorial

optimization [problems] to global optimality in polynomial time or better"(24:417).

2. Investigate methods of implementing simple and messy genetic algorithms on par-

allel architectures. Execution time and solution quality of parallel messy genetic

algorithms are compared using varying data distribution strategies. Execution time,

solution quality, and convergence characteristics of parallel simple genetic algorithms

are compared using varying communication strategies.

1.6 Assumptions.

Several key assumptions include:

2It should be pointed out that optimization is but one of many possible applications of GA, but it is
the one of interest here.

5
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Figure 3. AFIT's Genetic Algorithm Toolkit (Current Status)

"* There is an upper bound on the potential for increase in sequential computing per-

formance.

"* Future supercomputers exhibit ratios of inter-processor communication time to com-

putation time similar to those of current supercomputers.

"* The GENESIS simple and permutation genetic algorithms(27) operate correctly.

"* AFIT's parallel messy genetic algorithm and parallel simple genetic algorithms(14)

operate correctly.

Several additional assumptions are made regarding readership. Chapters III through

VI assume familiarity with basic concepts of computer science and discrete math. In

particular, it is assumed that the reader is comfortable with the concepts of algorithmic

complexity and combinatorics. An understanding of genetic algorithms and parallel algo-

rithms is helpful.
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1. 7 Scope.

With regard to the generalization of the messy genetic algorithm, it is shown that

the generalized version is capable of solving

"* a combinatoric optimization problem (the Traveling Salesman Problem),

"* a difficult functional optimization problem (Rosenbrock's Saddle, also known as De-

Jong function f2(13)), and

"* the fully deceptive binary function optimization problem which has been solved by

previously reported implementations of the messy genetic algorithm(14, 23, 24, 25).

The three problems are chosen specifically to demonstrate the messy genetic algorithm's

ability to solve certain types of problems. The Traveling Salesman Problem (TSP) is a

classic NP-complete problem(18). Any other NP-complete problem can be mapped to the

TSP, and vice versa. Thus, the messy genetic algorithm's ability to obtain near optimal

solutions to the TSP is indicative of its ability to obtain near optimal solutions for other

NP-complete problems. Rosenbrock's Saddle is representative of a class of functions which

are known to be difficult to optimize using standard gradient based techniques(13). It is

also of practical importance in control systems(14). The fully deceptive binary function

optimization problem is GA-Hard, i.e. provably difficult for simple genetic algorithms(20).

Because the existence of GA-Hard problems is one of the primary arguments against the

use of genetic algorithms, it is important to demonstrate the messy genetic algorithm's

ability to solve this type of problem. The performance of the generalized messy genetic

algorithm is compared experimentally to that of AFIT's original MGA implementation(14)

and the simple genetic algorithm(27) on the basis of solution quality.

With regard to the parallelization of the messy genetic algorithm, four methods of

data decomposition in the primordial phase are examined. One of the methods, which

uses a standard interleaving approach, is the one used in AFIT's original parallel MGA

implementation(14). Two others, which use modified interleaving, are strategies which

Dymek discusses, but does not implement. The last strategy uses a standard block distri-

bution approach. The strategies are chosen for their anticipated load balancing character-
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istics. They are compared experimentally on the basis of solution quality and execution

time for the fully deceptive binary function optimization problem.

Finally, a total of nine communication strategies for parallel genetic algorithms are

examined, including all possible combinations of three selection strategies and three solu-

tion sharing strategies. The three selection strategies are all parallel implementations of an

efficient and effective selection strategy commonly used in sequential genetic algorithms.

Two of the solution sharing strategies are typical of parallel genetic algorithm implemen-

tations, while the third is an attempt to improve the performance of the second strategy.

The strategies are compared theoretically on the basis of bias, spread, efficiency(3), and

effects on schema growth. They are also compared experimentally on the basis of solution

quality, execution time, and convergence characteristics.

1.8 Summary of Current Knowledge.

Current knowledge of messy genetic algorithms is limited to that established by

Goldberg, et.al. (23, 24, 25), Deb (11), and Dymek (14). Published applications are

limited to functional optimization problems with the exception of recent work by Deb

(11). A number of successful combinatoric optimization applications of simple genetic

algorithms have been reported.

A number of successful applications of parallel genetic algorithms have also been re-

ported. Dymek(14) and Kommu(35) both investigate the effects of communication strate-

gies on solution quality and execution time of parallel genetic algorithms. Dymek describes

a parallel implementation of the messy genetic algorithm(14).

1.9 Approach.

AFIT's original implementation of the messy genetic algorithm(14) is extended to

handle a wider class of problems, including combinatoric optimization problems such as the

Traveling Salesman Problem (TSP). Structured analysis techniques(60) are applied in order

to determine and document the requirements and specifications of the generalized messy

genetic algorithm. The process descriptions are formally specified using the architecture
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independent language UNITY(6) in order to facilitate parallelization. The performance

of the generalized implementation on the functional optimization problem described by

Dymek(14) is compared to the performance of the original implementation and the simple

genetic algorithm. The three genetic algorithms' performance on the TSP and DeJong

function f2(13) are also compared. In the case of the TSP, the performance of a version of

the simple genetic algorithm which is specifically designed to solve permutation problems

is also compared to the other three genetic algorithms' performance. All of the genetic

algorithms are implemented on a Sun-4 in C.

The architecture independent description of the messy genetic algorithm is examined

to identify reasonable methods of data distribution in the primordial phase. Four strategies

are identified, and versions of AFIT's parallel messy genetic algorithm(14) using each are

implemented on an iPSC/2 in C. The performance of the four versions in terms of solution

quality and execution time in a series of executions is compared.

AFIT's parallel simple genetic algorithm(14, 53), which is implemented on an iPSC/2

in C, is modified to allow use of conditional solution sharing. The modified version allows

three selection strategies and three solution sharing strategies. Dymek's premature con-

vergence experiments are extended to compare the effects on solution quality, execution

time, and convergence characteristics of the nine possible combinations of communication

strategies.

1.10 Layout of the Thesis.

This chapter describes the motivation, objectives, and approach for this thesis. In

Chapter II, the relevant genetic algorithm and parallel processing literature is summarized,

and its impact on this work is assessed. Chapter III describes the requirements analysis

and resulting design for a generalized version of the messy genetic algorithm. Experiments

examining the performance of the generalized messy genetic algorithm are discussed in

Chapter IV. Chapters V and VI describe experiments comparing several strategies for

parallel implementation of the messy genetic algorithm and simple genetic algorithm, re-

spectively. Conclusions regarding the experimental data are prebented in Chapter VII.

Finally, Chapter VIII offers recommendations for further research.
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1.11 Summary.

Limitations of computing capabilities in tlhe foreseeable future make necessary the
study of widely applicable, polynomial complexity optimization algorithms. Simple and

messy genetic algorithms are potential avenues for meeting the computational requirements

of the future. This thesis describes a generalized implementation of the messy genetic

algorithm, and experimentally compares its performance on several problems to the per-

formance of other genetic algorithms. It also theoretically and experimentally compares

various data decomposition and communication strategies for parallel genetic algorithms.
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II. Literature Review and Requirements.

This chapter summarizes current literature related to the implementation of genetic

algorithms (GA) on parallel computer architectures, beginning with the fundamental con-

cepts of search (Section 2.1). Discussion of genetic algorithms begins with an overview

of Holland's theories of adaptive systems, which led to the development of the first ge-

netic algorithms (Section 2.2). The opertaion of a "simple" genetic algorithm is de-

scribed(Section 2.3), followed by the basic theory explaining the effectiveness of genetic

algorithms (Section 2.4).

Building upon this foundation, ordering operators for the simple genetic algorithm

are discussed (Sections 2.5). Deceptive problems, which are the primary motivation for

messy genetic algorithms, and the operation of MGAs are discussed (Section 2.6).

Discussion then turns to an overview of parallel computing (Section 2.7), including

discussion of parallel architectures and parallel algorithms. This background is used to

identify the key questions which arise in the parallel implementation of genetic algorithms

(Section 2.8). The discussion includes a summary of how parallelism issues are addressed

by other efforts in parallel genetic algorithms.

2.1 Search Algorithms.

As mentioned in Chapter I, many problems can be posed as search problems, in

which an algorithm searches a space of candidate solutions for those points which optimize

some domain specific function subject to certain constraints. Search is a versatile problem

solving tool, because many practical problems can be easily represented as graphs(44:20-

25). An example of such a problem is the classic Traveling Salesman Problem (TSP), the

objective of which is to construct a "tour" from a list of cities such that every city is visited

exactly once and the total distance traveled is minimized.

In such a representation, each node in the graph corresponds to an encoded portion

of the problem, and each edge corresponds to an operation on the state of the problem'.

'Pearl(44:33) correctly distinguishes between a directed arc and an undirected edge.
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In the TSP example, each node represents a partial tour, while each edge represents the

operation of adding a city to the tour.

Pearl lists node generation, exploration, and expansion as the key operations in graph

searching(44:34). Node generation is the process of obtaining a new node from its parent.

A node is said to be explored when at least one of its children is generated. Once all of its

children are generated, a node is considered expanded. A search algorithm, then consists

of an unambiguous specification of the order in which nodes are to be generated. Pearl

distinguishes between blind search, in which the order in which nodes are generated is

determined entirely by information obtained from the search process, and informed search,

in which domain specific knowledge is applied to guide the search.

Brassard and Bratley identify five characteristics which are common to traditional

search algorithms(4:79):

1. A set of candidates from which to construct a solution.

2. A set of candidates which have previously been considered.

3. A test for feasibility of a specific candidate.

4. A selection function which determines the next candidate to consider.

5. An objective function which assigns values to candidate solutions.

The process of solving an optimization problem consists of searching for a solution (node)

or set of solutions for which the objective function is optimized, subject to the success

of the feasibility function. Pearl classifies traditional search algorithms as hill climbing,

uninformed systematic search, informed best-first search, specialized best-first search, and

hybrid search(44:35-69). The distinctions are made primarily by the method which the

selection function selects the next candidate for exploration.

Hill climbing strategies repeat the process of expanding the current node, selecting

the most promising node from the children, and continuing the search from that node until

a solution is found or the search fails. This strategy has a number of drawbacks which

limit its applicability. First, depending upon the particular problem, hill climbiiig is not

guaranteed to find a solution, or even to terminate. Second, again depending upon the
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particular problem, even if hill climbing does find a solution, it is not guaranteed to be an

optimal solution. In cases for which hill climbing is guaranteed to find an optimal solution,

it is referred to as a "greedy" algorithm.

Important variations on hill climbing include simulated annealing(47) and Monte

Carlo algorithms(4:262-267). Simulated annealing, which is so named because of the anal-

ogy to random atomic motions during annealing, allows the search to probabilistically

move in a locally non-optimal direction. The probability of doing so is controlled by an

"annealing schedule." Monte Carlo algorithms operate by repeatedly randomly selecting

children nodes and comparing them to the current node. If the child node is better than the

current node, it is adopted as the current node. Otherwise, the current node is retained.

In order to classify a search strategy as systematic, Pearl requires that it "not leave

any stone unturned," and "not turn any stone more than once." (44:16) Uninformed

systematic search strategies include depth-first, backtracking, and breadth-first. In each

case, explored nodes are retained in memory in case the search reaches a dead end without

finding a satisfactory solution.

In depth-first search(44:36), each node which is selected for exploration is fully ex-

panded before any other node is explored. In choosing a node to explore, depth-first search

gives preference to nodes at lower levels of the search tree. Backtracking(44:40) is very

similar, except that nodes are not fully expanded when they are explored. Breadth-first

search(44:42) is also very similar to depth-first search, except that preference is given to

nodes at higher levels in the search tree. Breadth-first search has the significant advantage

that for problems represented by locally finite graphs, and for which a solution exists,

breadth-first search is guaranteed to find a solution and to terminate. On the other hand,

in problems represented by graphs of bounded depth, depth-first search is also guaranteed

to find a solution and to terminate, and it may do so much sooner than breadth-first search.

In informed systematic search, nodes are evaluated using a heuristic function, which

uses domain specific knowledge to obtain a measure of merit for the node. The value

of the heuristic function is used to determine which node to explore next. Commonly

known informed systematic search algorithms include best-first search(44:48-56) and the
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A* algorithm(44:64). Finally, Pearl discusses hybrid search strategies, in which portions of

hill climbing, uninformed search, and informed search are combined.

An important consideration in the selection of a search algorithm for a particular

problem is the execution time required to find the solution, and how the execution time is

related to the problem size. Depending upon the problem to which they are applied, most

of the search algorithms described above are of exponential algorithmic time complexity,

i.e. their execution time grows exponentially with problem size. As discussed in Section 1.1,

such algorithms quickly become intractable for practical problem sizes.

Another important consideration is whether or not the algorithm is guaranteed to

find an optimal solution. Although optimal solutions are virtually always desirable, they

often are not required. In many practical situations, it is more desirable to find a good

solution in a reasonable amount of time than to find the optimal solution after it is no longer

useful. Pearl discusses "near-optimization" and "approximate-optimization" tasks, both

of which are subclasses of "semi-optimization" problems(44:15). Near-optimization tasks

are those tasks for which the solution obtained must meet a specific ac-ceptance criteria.

Approximate-optimization tasks require only that the solution obtained be near-optimal

"with sufficiently high probability."

2.2 Adaptive Systems.

Holland develops a theoretical framework for the analysis of complex adaptive sys-

tems. He cites as examples of such systems:

"* Genetics/evolution

"* Economics

"* Control systems

"* Physiological adaptation

"* Game theory

"* Machine Learning
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His framework makes use of the following variables:

"* the current environment, E E C, the set of possible environments

"* the system's adaptive plan, T E T, the set of possible adaptive plans

"* X, the plan comparison criterion

"* the set of structures currently in the system, A C A, the set of possible structures

"* the operators of the adaptive plan, wi E Si, the set of operators, and

"* I, the set of possible inputs to the system, including At, a measure of structure

performance

Using this framework, a problem in adaptation is well posed once T, C, and X have

been specified. Likewise, an adaptive system is specified by (A, fn, I, 7). Holland describes

by way of his examples how complex adaptive systems can be described using the frame-

work.

2.3 Simple Genetic Algorithms.

Goldberg defines genetic algorithms (GA) as "search algorithms based on the me-

chanics of natural selection and natural genetics" (21:1). More precisely, GA are algorithms

for which the inspiration is derived primarily from theories of natural selection and genet-

ics, via Holland's theories of complex adaptive systems(28). In keeping with mainstream

literature, this thesis uses terms from the sciences of biology and genetics to refer to the

software concepts which they have inspired. Goldberg describes in detail a particular ge-

netic algorithm, which he calls the "simple" genetic algorithm (SGA). The vast majority of

published genetic algorithm work has been based on the SGA, or slight variations thereof.

In the application of any GA to a particular problem, the first step is the design of an

encoding scheme. An SGA encoding scheme is a one-to-one mapping from the problem's

solution space to a fixed length binary string. GA strings are often likened to biological

chromosomes. The individual elements of the string are called features, and are analogous

to the genes of a chromosome. The values which an individual feature can assume are
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referred to as feature values, which are analogous to the alleles of a gene. The set of all

alleles is the genic alphabet.

In the case of a function optimization problem, the encoding scheme can be as simple

as concatenating the binary representations of the independent variables. For example,

Figure 4 shows an encoding scheme for a function of two variables in which each is encoded

as a six bit binary string. Encoding schemes for combinatoric optimization problems are

often more complicated. For example, Figure 5 shows a possible encoding scheme for

the Traveling Salesman Problem (TSP) which assigns each city a unique number, then

concatenates each city's number in the order in which they are to be visited.

I 10101 11011 0 1 1 1101
x y

Figure 4. Encoding Scheme for Functional Optimization Problem f (x, y), 0 < x, y < 64

12 1 7 1 3 1 10 1 1 5 8 11 1 6 1 2 1

Figure 5. Encoding Scheme for 12 city Traveling Salesman Problem

Once the encoding scheme has been defined, a function which decodes candidate

solutions and evaluates them relative to each other can be designed and implemented.

The value returned by this function is called the solution's fitness. The fitness function

corresponds to Brassard and Bratley's objective and feasibility functions, described in

Section 2.1.

GAs begin execution by randomly generating a set of candidate solutions, referred

to as the initial population. The number of solutions generated, the population size, is

implementation dependent and can range from a few dozen to several thousand. It has

been shown that the optimal population size for an application of the binary encoded SGA

is a function of string length, degree of parallelization, and degree of convergence sought

(19, 22). Once the initial population has been generated, GAs make repeated use of three

basic operators, each of which is applied across the population: reproduction, crossover,
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and mutation. These operators play the role of Brassard and Bratley's selection function2 .

One application of each operator completes an iteration, or "generation."

The reproduction operator is the means by which new generations are created from

old ones. It randomly selects strings from the current generation to copy to the next

generation, favoring those strings with higher fitnesses. It does not modify the strings.

The most common implementation of the reproduction operator is stochastic sampling

with replacement, more commonly known as "roulette wheel selection" (21:121). Many

other methods have been proposed, including "Remainder Stochastic Sampling without

Replacement," "Remainder Stochastic Independent Sampling," and "Stochastic Universal

Sampling" (3).

Baker proposes three metrics by which to measure the performance of various selec-

tion algorithms(3). Bias measures the mean accuracy with which an algorithm allocates

copies to solutions. Spread measures the maximum possible variation between the expected

number of copies and actual number of copies allocated to a solution. Efficiency is the al-

gorithmic complexity of the algorithm. Current theory of genetic algorithm behavior is

based on the assumptions of zero bias and minimum spread. Thus, in order to achieve the-

oretically possible efficiency, an algorithm must exhibit these properties. Baker's metrics

are discussed in more detail in Section 6.1.

The crossover operator is the primary mechanism by which new solutions are intro-

duced to the search process. It randomly selects two "parent" strings from the current

population, then randomly selects a crossover point within the length of the strings. Fi-

nally, it swaps the portions of the strings following the crossover point. This is illustrated

in Figure 6.

The third basic operator, mutation, prevents stagnation in the search process. It is

applied with low probability, typically less than 1% of the time. When it is applied, it

randomly alters a randomly selected gene from the string. This is illustrated in Figure 7.

2It is important to note that, in the context of genetic algorithms, the term "selection" is often used in

place of "reproduction." This is in contrast to Brassard and Bratley's "selection" function.
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Mate 1: 0i11i 1 Iiii ii 1, 0o !
Mate2: 1, 0 10_1_1_0 1_0_ 1, 0 1 1 io1

Crosso'er Point

Childi1: 0[0j 1 1 j 1j0 1j0j1o1o

Child 2: 0o L I, i' o

Figure 6. Crossover Operator

Parent: 0 01 0 0 10

Mutatitn Point

Child: 0 0 1 1 1 0 1 1 1 0

Figure 7. Mutation Operator

GAs repeat this process until some condition is met. A simple but common termi-

nation condition is that an arbitrary number of generations have been carried out.

2.-4 The Schema Theorem and Deception.

Goldberg develops an estimate for the performance of the SGA(21:28-33). Theoret-

ical analysis of GA performance makes extensive use of schemata, or similarity templates.

Schemata are strings composed of characters taken from the genic alphabet, with the ad-

dition of the "don't care" character. A schema thereby describes a subset of the potential

solutions. For example, the schema 1******* represents the set of all 8-bit strings which

contain a 1 in the first position. Likewise, the schema 1******o represents the set of all

8-bit strings which begin with a 1 and end with a 0.

Defining the average fitness of a string matching a schema H to be f(H), the average

population fitness to be f, and the number of strings in a population at time t which match
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the schema to be m(H, t), the effect of the reproduction operator is

m(H,t + 1) = m(H,t)f(H) (1)
+

The defining length, 6(H), of a schema is the "distance" between the index of the first

specified position and the index of the last specified position. For example, 6(1*****O*) =

7 - 1 = 6, while 6(1.******) = 1 - 1 = 0. Noting that crossover disrupts a schema only

when the crossover point occurs within the defining length of the schema, the probability

of survival under crossover for a schema in a string of length I is

6(H)
PŽ>- (2)

where pc is the probability of crossover and the inequality is used to reflect the fact that

crossover may not actually disrupt the schema even when the crossover point is within the

defining length.

The order of a schema H, which is denoted o(H), is the number of specified positions

in the schema. For example, o(1*******) = 1, while o(11111111) = 8. The probability of

survival for the above schema under the mutation operator then can be estimated as

p.. ,z 1 - o(H)pm,p. < 1 (3)

where pm is the probability of mutation. Combining these results and omitting negligible

terms gives an estimate for the expected number of examples of a schema in the next

generation:

m(H,t+ +1)>m(H,t) _[-1- P _1 (H)- o(H)p,] (4)

This is referred to as the Fundamental Theorem of Genetic Algorithms, and can be in-

terpreted as stating that "short, low-order, above-average schemata receive exponentially

increasing trials in subsequent generations" (21:33). This result also goes by the name of

the Schema Theorem.

19



The schema concept can be extended to apply to absolute and relative ordering

problems. Following Kargupta(31), an absolute ordering schema defines a set of valid

permutation strings. For example, the absolute o-schema ! I ! 5 ! ! represents the set

of all permutation strings for which the second and fourth positions contain alleles 1 and

5, respectively. This o-schema is distinct from the standard schemata * I * 5 * * in that

the former requires that the string represent a valid permutation, while the latter does not.

Following Goldberg(21), Kargupta uses rs'(H) to denote the set of all valid permu-

tation strings in which the alleles specified in H occur in the specified order. For example,

rs 6(1 ,5) represents all permutation strings of length 6 in which the allele 5 occurs after

the allele 1.

2.5 Ordering Operators.

One implication of the Schema Theorem is that SGAs have difficulty solving problems

in which important schemata (building blocks) have large defining lengths. One attempt to

overcome this difficulty is the implementation of the inversion operator (21:166-170). The

effect of the inversion operator, which operates on a single string, is to modify the ordering

of the genes within a string. Specifically, when the operator is applied, two points within

the string are randomly selected, and all genes within the string are inverted. The fitness

of the string is unchanged, because the genes still map to the same domain parameters.

Use of the inversion operator requires a more complex representation of the solution, since

loci information must be represented explicitly.

Inversion complicates crossover, because two arbitrary strings are not guaranteed

to share the same ordering. In fact, they are very unlikely to. A number of approaches

have been taken to resolve this difficulty(21). Goldberg reports(21:169) that Frantz(17)

investigated four mating rules in an attempt to prevent crossover between incompatible

strings. "Strict homology" requires that mates share the same ordering (Goldberg credits

this strategy to Bagley(2:168)). "Viability mating" allows strings with different orderings

to mate, but their offspring is only retained if it is a valid, completely specified solution.

"Any-pattern mating" randomly selects one of the two strings' orderings as the "prime"
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ordering, and maps the other string to match the prime ordering prior to mating. Finally,

"best-pattern mating" chooses the ordering of the more fit string as the prime ordering.

The motivation for the inversion operator is to allow the GA to search for good prob-

lem representations at the same time that it searches for good solutions. Unfortunately,

it has never produced good results due to its unary nature(26). Davis(9), Goldberg and

Lingle(26), and Smith(55) propose three other ordering operators which combine the ef-

fects of crossover and inversion. Partially Matched Crossover (PMX), Ordered Crossover

(OX), and Cycle Crossover (CX) all combine the orderings of two solutions in such a way

as two produce valid offspring. Each tends to preserve different properties of the original

orderings. PMX tends to preserve absolute ordering, OX tends to preserve relative order-

ing, and CX tends to preserve cycles. Each has been shown to produce better results than

simple inversion.

2.6 Dereption and Messy Genetic Algorithms.

Another implication of the schema theorem is that problems for which short, low-

order, above-average schemata do not combine to form globally optimal solutions prove

difficult for SGA. An example of such a problem is shown in Table 1. The fitness gradient

is such that the SGA tends toward solutions with fewer l's at the specified positions, as

shown in Figures 8 and 9(23:510). Thus, it may never find the global optimum which has

l's at all of the specified positions. Such problems are sometimes referred to as deceptive.

Deceptive problems in which the deceptive building blocks have long defining lengths are

called GA-hard. The function is order-3 deceptive because it is deceptive on a subproblem

which is defined on 3 positions.

Goldberg designed messy genetic algorithms (MGA) specifically to solve deceptive

problems(23, 24, 25). MGAs consist of a primordial and a juxtapositional phase(23). The

MGA's ability to solve deceptive problems stems from the use of partially enumerative

initialization, in which the initial population consists of all possible partial solutions of a

specified length. It is created by first enumerating building blocks, and then distributing

each building block across the genes in every possible combination. The building blocks

are an exhaustive list of allele combinations of length equal to the block size, or suspected
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Alleles Average Fitness
0**0**0********* 28

26
22

"* 0
1**0**0********* 14

1"1'"**** 0
0

30

Table 1. Order 3 Fully Deceptive Function
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Figure 8. Hamming Graph of Deceptive Sub-function
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Figure 9. Fitness Gradient of Deceptive Sub-function
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nonlinearity, of the domain problem. If the block size is greater than or equal to the level

of deception present in the problem, partially enumerative initialization guarantees that

all building blocks necessary to form the globally optimal solution will be represented in

the initial population.

The use of partially enumerative initialization motivates several other differences

between simple genetic algorithms and MGAs. First, MGAs must be capable of conducting

meaningful competition between partially specified solutions. The MGA finds a locally

optimal solution to the domain problem, called the competitive template, which it uses to

"fill in the gaps" in under-specified solutions to allow their evaluation.

Another difference between simple genetic algorithms and MGAs is the size of the

initial population. In an application of the MGA, there are kc building blocks, and ( e )k/
combinations of k genes, where k is the block size, C is the cardinality, and t is the string

length. Thus, the initial population contaiiLs

n = k'c ((5)
solutions, which is significantly more than in a typical simple genetic algorithm application.

The MGA enriches the initial population through the use of tournameni selection, and

periodically reduces the population size during selection. Tournament selection enriches

the population by increasing the proportion of building blocks which lead to improvements

to the solution represented by the competitive template.

The juxtapositional phase is similar to a simple genetic algorithm, with the main

difference being that the MGA must handle variable length strings. For this reason, the

crossover operator is replaced by a cut and splice operator. The behavior of the cut and

splice operator is shown in Figure 10(14:103).

Recently, Kargupta has examined deception in the context of ordering problems(31).

As standard deception3 is related to schemata, ordering deception is related to ordering

3 Because deception has only recently been examined in the context of ordering problems, there does
not yet exist a widely accepted term to refer to "standard" deception while excluding ordering deception.
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I '4

Is 2

Figure 10. Cut and Splice Operations

schemata. Kargupta presents an order-4 fully deceptive absolute ordering problem and an

order-4 fully deceptive relative ordering problem, and reports that Sikora(54) has demon-

strated that no order-3 fully deceptive ordering problem exists. Prior to this thesis, the

application of MGA to permutation problems had been suggested, but not addressed.

2. 7 Parallel Architectures and Algorithms.

This section discusses two distinct but interdependent aspects of parallel computing.

Section 2.7.1 considers issues related to the design and implementation of parallel computer

architectures. Section 2.7.2 examines the design and implementation of algorithms which

exploit application parallelism.

2. 7.1 Parallel Architectures. The vast majority of computer architectures in com-

mon use are based on the organization proposed by von Neumann in the 1940s, in which

a single memory area is used to store both instructions and data. Such architectures are

referred to as von Neumann-based. Von Neumann-based parallel processing systems can

be categorized as Multiple Instruction Multiple Data (MIMD), Single Instruction MXultiple

For simplicity, the old term "deception" is hereafter used to refer to " tandard deception" and references
to ordering deception are made explicit.
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Data (SIMD), Multiple Instruction Single Data (MISD), or Single Instruction Single Data

(SISD). A special case of the MIMD category is the Single Program Multiple Data (SPMD)

paradigm. Other architectures exist, but their use is primarily limited to research. The

majority of commercially available parallel architectures are either SIMD or MIMD.

During any given instruction cycle, all of the processors of a SIMD architecture

execute the same instruction, using different data. In order for the instructions to be

applicable to the data on all the processors, they must be more general and therefore less

powerful. As a result, the individual processors have small instruction sets, making them

relatively inexpensive, so that it is cost effective for SIMD architectures to include large

numbers of processors. SIMD architectures with 64,000 processors are fairly common. The

tradeoff is that for a fixed amount of memory, there is less memory per processor.

In contrast, the processors of a MIMD architecture act independently, and can take

advantage of more powerful instructions. Each processor is more expensive, so that MIMD

architectures are typically implemented with fewer processors than SIMD architectures.

This means that each processor can be allocated more memory.

A single processor and its allocated memory are together called a node. The relative

computational power of each node in a parallel architecture is often referred to as the

granularity of the architecture. Most SIMD architectures are categorized as fine grained

because they have a large number of nodes, each of which has a simple processor with

a small amount of memory. In contrast, most MIMD architectures are categorized as

coarse grained because they have a relatively small number of nodes, each with a powerful

processor and significant memory.

Some architectures allow processors to access memory allocated to other processors,

or simply allow all the processors to access a single global memory. Such architectures

are referred to as shared memory architectures. Processors within such architectures can

communicate data by storing it in memory which is accessible to the receiving processor.

Most SIMD architectures are in this category. Most MIMD architectures, on the other

hand, are distributed memory, meaning that processors cannot access memory allocated to

other processors. These architectures are also referred to as message passing, because the
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Figure 11. 4 x 4 Mesh Interconnection Network

processors communicate via communication links. This type of communication is generally

very slow relative to other processor activities.

Parallel architectures can also be categorized according to their interconnection topol-

ogy, or network, which defines the other processors to which each processor can communi-

cate data. A common interconnection topology for SIMD architectures is a 2-D mesh, in

which the processors are arranged, logically if not physically, in a two dimensional array.

A 4 x 4 mesh is shown in Figure 11. Mesh interconnection networks allow each processor

to communicate data to each of the four processors at its sides. Well known examples of

such systems are the Connection Machine, which is manufactured by Thinking Machines,

Inc., and the Paragon, which is manufactured by Intel.

A common interconnection topology for MIMD architectures is a hypercube. Hyper-

cube architectures have a dimension, N, and have 2N processors. A hypercube of dimension

4 is shown in Figure 12. Each processor is directly connected to, and can communicate data

to N other processors in a single step. Any processor can communicate data to any other

processor in no more than N steps. One of many examples of a commercially available

hypercube architecture is Intel Corporation's parallel supercomputer, the iPSC/i860.

2. 7.2 Parallel Algorithms. Software development for parallel architectures is fun-

damentally different than for sequential architectures (6). The primary question in de-

veloping parallel software is whether to design parallel algorithms and implement them

directly, or to implement sequential algorithms and then parallelize them. For most cases
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Figure 12. Dimension 4 Hypercube Interconnection Network

in which there is no sequential software predecessor, and even in some cases where there

is such a predecessor, the first approach will likely result in better performance.

Several algorithm properties can lead to performance improvements when the algo-

rithms are implemented in parallel. The two most common such properties are data paral-

lelism and control parallelism(38). The former describes a situation in which an algorithm

processes multiple data items in the same way, and the actions taken for any particular

data item do not depend on the results of processing other data items. The latter is present

when two distinct operations on the same data do not depend on each other. Another form

of parallelism, sometimes referred to as "trivial" parallelism, is present when two separate

activities, which share neither control nor data, can be executed simultaneously.

Chandy and Misra propose an architecture independent method for the description

of an algorithm(6). A UNITY (Unbounded Nondeterministic Iterative Transformations)

program describes the requirements for a process. It does not specify the order of operations

or the mapping of operations to processors. Thus, a UNITY program may be mapped to

any architecture, whether it be sequential, asynchronous shared-memory, or distributed

memory. The description of a mapping describes how the UNITY program is executed on

the target architecture. Mappings for particular classes of architectures exhibit common

characteristics. The target architecture in this study is a hypercube, which is a distributed

memory (DM) system. Chandy and Misra desciibe DM systems formally as consisting of

a fixed set of processors, a fixed set of communication channels, and a memory for each

processor(6:83). As such, a mapping to such an architecture must

* allocate each statement in the program to a processor;

* allocate each variable to either a memory or a channel;
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"* specify the control flow for each processor;

"* allocate at most one variable, which is of type sequence, to each communication

channel;

"* be such that a variable which is allocated to a channel is referenced in statements

which are allocated to exactly two processors.

Furthermore, the statements allocated to one of the processors which reference a channel

variable may only modify the variable by appending an item to the sequence. They may

only do so when the sequence is of length less than a constant buffer size. Finally, the

statements allocated to the other processor which references the channel variable may only

modify the variable by removing the first item in the sequence. They may only do so when

the length of the sequence is greater than zero.

2.8 Parallelism in GA.

Genetic algorithms possess both data parallelism and control parallelism. The data

parallelism is exhibited in the application of identical genetic operators to multiple data.

In the case of the reproduction and crossover operators, the parallelism exists at the string

level. In the case of the mutation operator, it exists at the gene level. The control paral-

lelism present consists of the ability to overlap execution of operators. Control parallelism

exists only within a single generation of a simple GA due to the requirement for calculation

of average population fitness prior to application of the reproduction operator. Thus, in

order to significantly increase the computational power which can be applied to genetic

algorithms, a parallel implementation must seek to exploit the data parallelism.

In an implementation of a PGA based on data decomposition, the population is

distributed amongst the various processors, each of which performs selection, crossover,

and mutation, as shown in Figure 13(14:28). The portion of the population distributed to

a given processor is referred to as a subpopulation. Key design decisions are how, when,

and what information should be communicated between processors.

28



1

Figure 13. Typical Hypercube "Decomposition" of Genetic Algorithm

2.8.1 Hypercube Implementations. Global selection requires a global fitness calcu-

lation. In most reported hypercube implementations of genetic algorithms, the individual

nodes compute subpopulation average fitnesses, which they communicate to an arbitrary

node. This node then computes and communicates the global average fitness, which each

node uses to perform selection locally. Some implementations perform this operation every

generation (8, 7, 45, 30, 46), while others communicate only after a number of generations

(58), performing purely local selection in between. It has not been shown that this ap-

proach either maintains or disrupts the Schema Theorem, although Pettey shows that the

number of trials is bounded above exponentially(46).

Global selection also requires either frequent solution migration to maintain equal

subpopulation sizes or relaxation of certain constraints, such as fixed population size(14).

The latter affects the allocation of copies to solutions, possibly leading to premature con-

vergence.

Because global selection results in large communication requirements, some hyper-

cube implementations implement local selection(14). Current theory does not address the

effectiveness of genetic algorithms using local selection.

2.8.2 Fine Grained Implementations. Implementations of PGA on fine grained

SIMD architectures, such as the Connection Machine, assign much smaller subpopulations

to each processor than are typically used in hypercube implementations(51) (49) (40) (57)

(37) (41). In some cases, each subpopulation consists of a single string. Reproduction and
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crossover are performed in "neighborhoods" of processors. A fairly common definition of

a processor's neighborhood is the set of processors within a specified "distance" of that

processor in a 2-D (wraparound) mesh or ladder4 .

Neighboring processors tend to converge on similar solutions, so that in mesh im-

plementations, the effectiveness of the crossover operator is limited to those processors at

the borders of "colonies." As a result, trial allocation is bounded by a quadratic function

as opposed to an exponential function(57), thus reducing the effectiveness of the genetic

algorithm.

There are various methods for getting around this problem, including global dis-

tribution of the globally best solution, "scattering"(37) and hill climbing(40). All have

been shown empirically, though not theoretically, to be effective at finding near optimal

solutions.

2.9 Kruskal- Wallis H Test.

This thesis presents the results of a number of experiments in which various imple-

mentations of genetic algorithms are compared. In order to draw meaningful conclusions

from the results of those experiments, statistical hypothesis testing is required(1:483).

Many statistical tests are applicable only when the data may be assumed to be normally

distributed. Such tests are not appropriate in most of the experiments in this thesis. The

populations in these experiments cannot be assumed to be normally distributed because

there is a known bound on the experimental data. For example, there is a lower bound

on the solution quality for the Traveling Salesman Problem experiments, corresponding

to the tour length of the optimal solution. The existence of a bound on the experimental

data is inconsistent with the assumption of a normal distribution. Furthermore, in most

cases the bounds are near the observed means of the experimental data, so that the errors

introduced by the assumption of a normal distribution are likely to be quite large.

The Kruskal-Wallis H Test determines "whether or not the means from k independent

samples are equal when the populations [cannot be assumed to be] normal"(1:544). The

'Muhlenbein uses a "ladder" architecture, which is essentially a mesh of width two(41).
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Suppose we have k indpependent samples from k populations. We wish to test the null hypothesis

H0 : the samples are from identical populations

against the alternative hypothesis

H1 : the populations are not identical

at the a level of significance.

1. Compute h. Calculate
12 R12 = ; k' - 3(n + 1)

h (n + 1)---- ni

2. Accept or reject Ho. If h > X2 reject Ho; otherwise accept Ho.

Figure 14. Kruskal-Wallis H Test Algorithm

(1)

algorithm for the Kruskal-Wallis test is given at Figure 14, in which n is the total number

of observations, k is the number of samples, and Ri is the rank of observation i within the

popluation. The Kruskal-Wallis H Test is used throughout.
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III. Generalization of the Messy Genetic Algorithm.

The messy genetic algorithm's ability to solve deceptive problems of the type dis-

cussed previously (Section 2.6) has been demonstrated, and is central to claims of its ro-

bustness in the context of functional optimization problems(23, 24, 25). The MGA's ability

to solve deceptive ordering problems(31) has not been addressed, and therefore robustness

claims do not currently include applicability to permutation type combinatoric optimiza-

tion problems. This chapter discusses the generalization of the MGA to permutation

problems as well as functional optimization problems. It also examines the relative per-

formance of the generalized MGA compared to AFIT's original MGA implementation(14)

and the GENESIS simple genetic algorithm(27).

Dymek(14) uses structured analysis techniques(60) to develop requirements, spec-

ifications, and a high level design of the messy genetic algorithm based on Goldberg's

descriptions(23, 24, 25). As an alternative to structured analysis, Rumbaugh describes ob-

ject oriented analysis and design techniques(50). In order to obtain the maximum benefit

from reuse, Dymek's structured analysis is revised for the generalized MGA. The require-

ments, which are presented in the form of a hierarchy of data flow diagrams, are modified

to reflect changed and additional requirements for the generalized MGA implementation

(Section 3.1). The specifications, which are presented as UNITY process descriptions are

modified accordingly (Section 3.2), as is the high level design, which is presented as a

structure chart (Section 3.3).

3.1 Requirements Analysis.

3.1.1 Problem Statement. The generalized messy genetic algorithm is a stochastic

semi-optimization algorithm applicable to both functional and combinatoric optimization

problems. It accepts as input at run time the parameters shown in Table 2. The user

must define the function to be optimized in an evaluation, or "fitness," function. The user

must also specify the optimization criteria, e.g. whether the function is to be maximized

or minimized. Specifics regarding the form of the fitness function and the optimization
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ft Parameter Syntactic Meaning

String Length (I) number of genes in each fully
specified string

Block Size (k) estimated nonlinearity, or level of
deception, of the problem

Reduction Factor factor by which population size is
reduced during reducing tournaments

Reduction Interval number of generations between
population reducing tournaments

Number of Reductions number of primordial phase
population reducing tournaments

Shuffle Factor number of strings examined in a
search for a compatible opponent

Bitwise Cut Probability (p4) probability per bit that a
string will undergo a cut

Mutation Probability (pmo) probability that a bit will undergo
a mutation

Total Generations sum of primordial phase and
juxtapositional phase generations

Overflow Factor maximum ratio by which actual
string length may exceed 1

Table 2. Messy Genetic Algorithm Parameters

criteria are left to the low level design (See Section 3.4). At completion the MGA outputs

the best solution found, as well as the fitness of the solution.

3.1.2 Context Diagram. The context diagram for the generalized MGA, shown in

Figure 15, reflects the generalization of Dymek's implementation to both functional and

combinatoric optimization problems(14:67). There are two differences between Figure 15

and the context diagram for Dymek's implementation. The first difference is the substitu-

tion of the initialization-function flow for the genic-alphabet flow. This change is

motivated by the tendency for combinatoric optimization problems to require genic alpha-

bets of large cardinality. For example, the cardinality of the TSP is equal to the problem

size(22). In contrast, functional optimization problems are often best represented using a

binary genic alphabet(22). For example, a functional optimization problem in which each

of two independent variables ranges from -2.048 to 2.047 would be very naturally repre-

sented by a 24 bit binary string. As presented by Dymek(14), the string is divided into
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two segments of 12 bits, each of which is interpreted as a signed integer and then divided
-213 1

by 1000. Each segment thus has a range from -22 = -2.048 to 2" = 2.047
1000 1000

Run time specification of the genic alphabet requires explicit specification of a char-

acter to represent each possible value of a gene. This is impractical if not impossible for

large combinatoric optimization problems, for the simple reason that there is a limited

number of ASCII characters. Therefore, the generalized MGA does not explicitly accept

the genic alphabet as run time input. Rather, it requires the definition of a domain initial-

ization function, which must generate the genic alphabet. The generalized MGA uses the

cardinality of the genic alphabet to generate a genic alphabet. The domain initialization

function can also perform any necessary domain specific initializations, such as accepting

the distance matrix defining an instance of the TSP.

The second difference between Figure 15 and Dymek's context diagram is the addition

of the overlay-function flow. The addition is motivated by the observation that for

many combinatoric optimization problems, not all combinations of alleles constitute valid

solutions. This complicates the evaluation of partially specified solutions, because a simple

overlay operation of the partial solution on the competitive template may not result in a

completely specified solution. Referring again to the TSP example, overlaying a partial

tour on a completely specified tour is very likely to result in a tour which visits some cities

twice and other cities not at all. It also may result in a tour in which each city is listed

once, but the tour is actually composed of multiple cycles. Therefore, the generalized MGA

implementation requires the definition of a third user defined function. The domain overlay

function must accept a partially specified solution and a competitive template and must

return a completely specified solution based primarily on the partially specified solution.

There is no requirement concerning the optimality of the solution returned by the overlay

function.

3.2 Specifications.

The Level 1 data-flow diagram (DFD) for the generalized MGA, shown at Figure 16,

differs from Dymek's in two respects in order to reflect the additional requirements dis-

cussed previously and to explicitly acknowledge a previously existing requirement(14:67).
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Figure 15. Context Diagram for a Messy Genetic Algorithm

First, it documents the domain initialization and domain overlay function requirements.

Second, it indicates the requirement for the availability of the competitive template infor-

mation in the juxtapositional phase. The fundamental requirements remain unchanged.

The MGA initializes a population, enriches that population, and applies genetic operators

to the population to generate a semi-optimal solution. All of the data elements used in

the requirements analysis are defined in the data dictionary (Table 3).

The Level 2 DFD for the initialization phase is shown in Figure 17. It depicts the

three key processes of the initialization phase: the generation of the competitive template,

the creation of the building blocks, and the distribution of the building blocks to create

the initial population. Separate generation and distribution of the building blocks would

ideally be treated as an implementation decision, and not specified as a requirement. It is

included here to retain agreement with Goldberg's description of the partially enumerative

initialization process(23) and Dymek's associated implementation(14). Any design which

generates the same initial population satisfies the problem statement, regardless of whether

or not the building blocks are ever explicitly generated.

The Level 2 DFD for the primordial phase, which is shown at Figure 18, differs

from Dymek's in several respects. Dymek decomposes the Initialize Population pro-

cess into Reproduce Population and Decrease Population, which does not explicitly

acknowledge the presence of tournament selection in the primordial phase(14:68). Fig-

ure 18 decomposes the Initialize Population process into into the Select Strings

and Conduct Tournament processes, which capture the important data transformation ac-
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Data Element Name Definition
allele *the value of a gene*

E genic-alphabet
buildingblock *partial solution of length building-block.size*

string
building-block-size *highest order suspected nonlinearity*

*range: 1-stringJength*

competitive-template *locally optimal string*
string

cut-probability *the likelihood a string will undergo a cut*
*range: 0.0-1.0/(stringJength)*

cut-string *string which has just undergone a cut*
string

evaluation-function *user-supplied function which evaluates how well
the string solves the problem*

f(string) -* number
gene *atomic unit of a string*

allele + locus
initial-population *the starting population*
initialization-function *user-supplied function which generates genic

alphabet and initializes evaluation-function*
juxtapositional.-parameters *input parameters for the juxtapositional phase*

total.-generations + cut-probability + splice-probability
genic-alphabet *the values which may be assigned to an allele*
locus *position of a gene within a string*

*range: 1-stringJength*

overlay-function *user-supplied function which combines partially
specified solution with competitive template to
form completely specified solution*

POPULATION *all strings currently existing in the MGA*
2{string}

reduction-information *parameters specifying the reduction strategy*
reduction-rate + reduction-interval + reduction-total

reduction-interval *number of tournaments between reductions*
integer

reduction-rate *ratio by which population is reduced*
*range: 0.0-1.0*

reduction-total *total number of reductions*
integer

solution *best solution found by the MGA*
string

splice-probability *probability two cut-strings will be concatenated*
*range: 0.0-1.0*

string *solution encoded in the genic alphabet*
1 f{allele + locus) = I{gene)

string-length *length of string which fully specifies a solution*
string-pair *two randomly chosen strings*

2{string}
total.generations *number of generations in juxtapositional phase*

Table 3. Data Dictionary for Messy Genetic Algorithm
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Figure 18. Level 2 Data Flow Diagram for Primordial Phase

tivities of the primordial phase. It also explicitly acknowledges the requirement for the

reduction-inf ormation flow to the Select Strings process.

The Level 2 DFD for the juxtapositional phase is given at Figure 19. It differs

from Dymek's in several respects, again in order to reflect the additional requirements

discussed above, acknowledge previously existing requirements, and model the pertinent

data transformations(14:67-69). First, it treats Cut and Splice Strings as a single pro-

cess, because the cut and splice data transformations involved always occur together and

are interdependent. Second, the DFD includes the Save Best process which returns the

solution to the user, thus documenting a previously existing requirement. Finally, it rec-

ognizes the requirements for the domain overlay and domain evaluation functions, thereby

documenting both a previously existing requirement and a new requirement.

3.2.1 Process Specifications. The process specifications are presented formally as

UNITY descriptions in order to avoid implementation and architecture specific details in

the requirements analysis(6). The formal process specification for the overall MGA process

is shown at Figure 20.
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Figure 19. Level 2 Data Flow Diagram for Juxtapositional Phase

3.3 High Level Design.

In order to obtain the maximum benefit from reuse, as much of the original design

as possible is retained in the generalized design. Thus, the transaction and transform

analysis(43:208-237), which would follow the requirements analysis in the structured design

process, are omitted. The existing design is compared to the generalized requirements, and

those requirements which are not met are identified. In addition to the capabilities of the

original implementation, the generalized implementation must:

"* accept a user defined optimization criteria,

"* accept a user defined domain initialization function which must specify the cardinality

of the encoding scheme,

"* internally generate the genic alphabet given the cardinality specified in the domain

initialization function, and

"* accept a user defined domain overlay function.

These requirements dictate modifications to the messy genetic algorithm's design.

Other changes in the requirements which have been discussed previously are clarifications
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Program MGA
declare

type MGA-string is record {
alleles array[O..lmaa, - 1] of O..C - 1
loci array[O..lmaz - 1] of O..l - 1
fitness real}

type Population is list of MGA-string
the.best MGA-string
pop array(O.. MAXGENq of Population
gen :integer
currpopsize :integer

always

POP-SIZE = ( k )

initially
the.best.fitness = MIN-FITNESS
gen = 0
conduct-tournament = FALSE
cut-and-splice = FALSE

assign
conduct-tournament := TRUE

if 0 < gen < PRIM.GEN A -. conduct-tournament

)1l
cut-and.splice := TRUE

if PRIM-GEN < gen < MAXGEN A -, cut-and.splice A conduct-tournament) Ii
conduct-tournament := TRUE

if PRIM-GEN < gen < MAX-GEN A - conduct-tournament A cut-and.splice

) II
( the-best := pop[MAX.GEN- 1][:]

if gen = MAX-GEN A (V j: i< j < popsize[MAX.GEN- 1] :: pop[MAXGEN- 1][:]))
end {MGA}

Figure 20. UNITY Description of the Messy Genetic Algorithm

40



Function Initialize-Population
declare

lock boolean
loci array [O..k] of integer

initially
lock = FALSE
popinder = 0
CVi: 0_< i < k:" locili = k-i-i )
(V i: 0 < i < POP.SIZE:: distribution[i] =i)
(V i: 0 _ i < m:: SUBPOPSIZEs =

+1 )1 modm

k , Ck otherwise)

assign
(OV i:O0<_i < k):

(lVj: 0_< j< k:
Pop[O][popindejallelbjl,
pop[Ol[popin&dex.loci[J,
popindex,
lock :=
building-block[i mod Ckl.aileleJ],
loci) ,
popinder + 1,
TRUE

if (popindex mod Ck 0 0) V (lock = FALSE)) II
lV j: 0_< j< k:

locsi,, lock :=
loci~1 + 1, FALSE
if (V,: I < n < j :: locin] = locln- 11 - I)

"A Ioci0] = 1 - 1
"A loc4,71 < lociUj - 1] - 1
A(popindex mod Ck = 0)
A(lock = TRUE)

0, FALSE
if (Vn: 1 < n <:: loci[n] = loci[n- 1] - 1)

A(popindex mod Ck = 0)
A(lock = TRUE)
A loc0•O] = 1 - 1

)
end {Initialize-Population}

Figure 21. UNITY Description of the Initialization Phase
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Function GCT
declare

seq integer
improved boolean
CT : MGA-string
variation : array [0..1 - 1, O..C - 11 of MGA.jtring

initially
seq 0
(V i: 0 < i < 1:: CT.-aele[i],CT.locsil] := Random(O, C - 1), i

assign
CT.fitneass, seq, improved := eval(CT), 1, FALSE ) )II

(V i: 0 < i < 1:: (V j: 0 < j < C:: variation[iQ] := CT
if seq = 0)

II
(V i: 0 < i < 1:: (V j: 0 < j < C:: variation[i,j].allele[s, seq : j, 2

if seq=)
II
([lV i: 0 < i< 1:: (V j: 0 <j <C ::

CT, improved, aeq := variation[i, J], TRUE, 3
if better(eval(variation[iil), CT.fitness) A seq = 2))

I'
GCT-done, seq := -. improved, 0

if seq = 3)
end GCT}

Figure 22. UNITY Description of the Generate Competitive Template (GCT) Process

Function CBB
declare

seq : integer
improved : boolean
CT : MGA.string
variation : array [0.- - 1, O..C - 1] of MGA-slring

initially
seq =0
(V i:O0< i< 1::

CT.allele[il,CT.1oci[i1 := Random(O, C - 1), i)
assign

(V: 0< i < Ck :: (Vj: 0 <j < k::
biiding-block[i].alleleL], GBB-done := (i div CJ) mod C, TRUE))

end {C BB}

Figure 23. UNITY Description of the Create Building Blocks (CBB) Process
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Function Conudct- Tournament-Selection
declare

distribution array [1..POP.SIZE] of integer
permutation array [1..POP-SIZE] of integer

n~h integer
o integer
popindex integer
candidate-found array [1..PO&-SIZEj of boolean
tot&?l-aeq integer

always
candi = distribution[popindez]
carnd2 = distrib utio n[(pop index + i mod popindez) + 1]

19 Pl1]

compatible = 0 < I candl.loci nl cand2.loci
initially

tolurn-seq = 0
assign

(IV i : 1 < i < POP-SIZE:
candidate-found[s], permutation[s] n8 h, torn-lseq
FALSE, Random(POP-SIZE) 1, 1 )

)if tourn-seq = 0 A conduct-tournament

(0 V i: 1 < i < POP-SIZE::
diatibutio;n[:1, dia ribaution~permutationlil], tourn..aeq :=distribution[permuatauor[s]], duahribution(aj, 2

)if tourn..aeq I

(11V popinde:: 1 < popindex < POP-SIZE::
(OV i: 1 < i <ý 'na A-ca-ndidate-foind[popindez]

candidatie-ound[popindezxJ, newdistribution~popindeiJ, tourn.-aeq
TRUE, candi, 3

if fitnesa(candi) > fitness(cand2) V
(fitness(candl) = fitness(cand2) A Al < A2) A
compatible)

TRUE, cand2, 3
if fiftness(cand2) > fitness(candl) V

(fitncaa(candl) = fitness(cand8) A Al > ;k2) A
compatible)

FALSE, candl, 3
if -, compatible

)if tourn..aeq = 2

(IV popinder : 1 < popindex < POP-SIZE::
distribution[s], condttct-tournameni, tourn-seq := newdidatribaition4a1, FALSE, 0 if candidate-found~i]

)if tourn..aeq =3
end f Conduct-Tournament-Selectiou()}

Figure 24. UNITY Description of the Conduct Tournament Process
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Function Cui..anL-Splice
declare

popiindez integer
first-cut integer
second-ciul integer
cut-array array [1..4] of stru.cture
cut&indez integer
totaal-rnugs: integer
matle struscture
mates stru~cture

rand3 float
c-and..aaeq integer
seq..arrayj array [1..POP-SIZE/2] of integer

initially
cut-index 0
rand3 rand()
totalst rings = 0
c-aind-s..aeq = 0
(V i : I < i < POP-SIZE12 :: seq-array[s] = 0

always
matle = distirbution[po pindex]
maie2 = distribution~popindex + POP-.SIZE / 2]

assign
(IVi : 1 < i < POP-SIZE:

permutatiion[:I c..and-s-eq
Random(POP-SIZE) 1)

)if c-and-s-seq = 0 A cut-and-splice
g11 V i - I < i < POP-SIZE ::
distribuTaion[i], distribution[permutaalion[:1], c..and-s-s.eq distribution[perinslation[s]], distributiaon[s], 2

)if c-and..s.seq = 1
(flV popindex : 0 < popindex < POP-.SIZE / 2

( first..cut. cut-array[0], cut-arrayj[3] :
1, head(matel), fail(me1tel) if rand() < pA:(Aj - 1)

0, matle, null otherwise
) if seq..array[popindexi = 0

s econd-.cust, cut-array[l], cet-array[2]
1, head(mate2), tail(mate2) if rand() < Pk(A2 -1)

0, mate2, null otherwise
)if seq.array[popindcx] =0

11( seq-arrap[popinde4~ I= if seq-arrayjjpopindes] 0)
( totaal-srings, seq..arra[popindex] := 2 + first-cut~ + second-cut, 2) if aeq-arrop~popindeil=
(i populelion[gen + 1][popindeaiJ, popindex, cut-index, c-and-s-aeq, seq..arra[popindex], cut-and-splice

cat(cusLarrap~cut-indez4 CtaLarray[cut-.index + 1]), popindez + 1, cLindex + 2, 0, 0, FALSE
if cut-index + 1 < totaal-srings A randS > P,

cut-array[cutsindex], popinder + 1, cut-index + 1, 0, 0, FALSE
otherwise

)if seq-arrayfpopindez] = 2
)if c..and-s-..aq = 2

end f Cut-tand-Splicel

Figure 25. UNITY Description of the Cut and Splice Strings Process
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Function SaeBet
assign
(9V i: 0 < i < POPSIZE:: the-best:= pop[sl

if pop[s].fltness L the-best.fitness )
end {ISo•eBest}

Figure 26. UNITY Description of the Save Best Process

of existing requirements. They are satisfied by the original implementation, and do not

necessitate design changes.

In order to satisfy the optimization criteria requirement, those modules which com-

pare the fitnesses of solutions must be identified, as well as the situations in which they

do so. The exact method of satisfying the requirement is left as a low-level design de-

cision. Obvious alternatives are to replace the comparisons with function calls or with

macro calls(32:272-274). Function calls axe potentially more powerful, while macros axe

more efficient.

The domain initialization function must be invoked by the MGA code some time

after the MGA reads the inputs but before it uses the genic alphabet. Alternatives include

invoking the domain initialization function from the input module, the top level execu-

tive, the initialization module, or the CreateBuildingBlocks module. In principle, the

function may be implemented either as a macro or as a function call. The determination

is left as a low-level design decision.

Likewise, the generation of the genic alphabet must be accomplished after the car-

dinality is determined, which occurs in the domain initialization function, but before the

generation of the building blocks. Alternatives are determined by the choice of when to

invoke the domain initialization function, but may include generating the genic alphabet

in the domain initialization function itself, the input module, the top level executive, the

initialization module, or the CreateBuildingBlocks module. Again, the determination

is left as a low-level design decision.

Finally, the domain overlay function must be invoked prior to every function eval-

uation. Thus, the modules which invoke the evaluation function must be identified, and
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Figure 27. Structure Chart of the Generalized Messy Genetic Algorithm

modified to invoke the overlay function. As is the case with the domain initialization func-

tion, the domain overlay function may, in principle, be implemented either as a macro or

as a function call. This choice is also left as a low-level design decision.

The structure chart for the generalized MGA is given in Figure 27, while that of the

original MGA design(14) is given in Figure 28 for comparison. There are several differences

between Figure 28 and the structure chart presented by Dymek(14:106):

"* Figure 28 doeb itot show 01, pow C libraxy function,

"* Figure 28 documents the fact that the GenerateCompetitiveTemplate module

invokes the eval module,

"* Figure 28 includes aesthetic improvements of Dymek's figure.

The generalized MGA structure chart includes the domain initialization and domain

overlay modules, which replaces the process-string module.
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Figure 28. Structure Chart of AFIT's Original Messy Genetic Algorithm

3.4 Low Level Design.

3.4.1 Requirement Driven Low-Level Design Decisions. In order to complete the

design of the optimization criteria, the modules which compare solution fitnesses are iden-

tified:

* the Generate_.Competitive_.Template function, which compares the candidate tem-

plates to select a locally optimal solution, and compares the solutions it generates to

the best solution found so far;

• the Creato..InitialPopulation function, which compares each initial solution as

it is generated to the best solution found so far in the initial population;

* the ConductPrimordialPhase function, which compares solutions which are se-

lected to compete against each other; and

* the Conduct_.JuxtapositionalPhase function, which compares each solution as it

is generated to the best solution found so far, and compares solutions which are

selected to compete against each other.
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Also, the use of a function call or a macro to satisfy the optimization criteria re-

quirement must be addressed in the low-level design. Use of a function call allows greater

flexibility than a macro definition. On the other hand, a function call incurs computational

overhead not present in a macro definition. Another difference is that if the optimization

criterion is defined using a macro definition, modification requires recompilation of all

modules which reference the definition, while otherwise only the optimization function

must be recompiled. In either case relinking is required. Because it is assumed that most

optimization problems of practical interest can be easily posed as either maximization or

minimization problems, time efficiency is considered more important than flexibility. Thus,

the optimization criterion is defined using a macro. Recompilation and relinking are han-

dled by the UNIX make utility(56). All MGA code which compares the fitnesses of two

solutions, such as a test a<b, is replaced by a macro better(a,b). A macro definition

similar to the following, which specifies that fitness a is better than fitness b if a<b, must

be included in the domain specific header file domain. globals .h:

#define better(a,b) a<b

The macro definition shown causes the generalized MGA to favor solutions with lower

fitnesses, and is therefore appropriate for minimization problems.

It is assumed that the initialization required by many problems is too complex to

implement conveniently using a macro definition. Thus, the domain initialization function

must be implemented as a C callable function. The selection of the module from which

to invoke the domain initialization function is impacted by cohesion considerations(43:82-

99). Coupling is not considered, because the existing MGA code makes such extensive

use of global variables that coupling is no longer significant. The extensive use of global

variables facilitates rapid prototyping and is used commonly in research oriented genetic

algorithms(27), but also significantly complicates maintenance(43). Invoking the initial-

ization function from the input function results in procedural cohesion, whereas invok-

ing the function from the executive gives sequential cohesion(43). Sequential cohesion is

preferable(43), so that invoking the function from the executive is preferable to invoking

it from the input function.
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The generalized messy genetic algorithm performs repeated experiments within a

single execution. It invokes the initialization and the CreateBuildingBlocks mod-

ules separately for each experiment. Because the domain initialization function need

not be invoked separately for each experiment, invoking it from the the initialization or

CreateBuildingBlocks module is inefficient. Thus, the domain initialization function

is invoked from the executive.

The modules in which the generation of the genic alphabet may occur are thus limited

to the domain initialization function, the executive module, the initialization module, or

the Create_-BuildingBlocks module. In order to allow the user the greatest flexibility

in the implementation of the evaluation function, the genic alphabet must be generated in

the domain initialization function.

The modules which invoke the evaluation function include

"* the GenerateCompetitiveTemplate function, which evaluates each candidate tem-

plate;

"* the Create.-InitialPopulation function, which evaluates each solution as it is

generated; and

"* the Conduct -_JuxtapositionalPhase function, which also evaluates each solution

as it is generated.

Each invocation of the evaluation function is preceded by an invocation of the overlay

function. In addition, the initial candidate for the competitive template is created by an

invocation of the overlay function with an empty template.

3.4.2 Additional Low-Level Design Decisions. A number of additional modifica-

tions are included in the generalized version which are not directly traceable to the gener-

alization requirements identified previously, but which facilitate shorter development cycles

and/or more efficient experimentation.

1. Code separation. The source code for the original implementation is kept in a single

file. In order to facilitate more rapid development and debugging, the generalized
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implementation separates the domain independent source code into eight header files

and nine source code files. Additionally, the domain specific functions are separated

into a header file and three source code files, which reside in a separate directory.

This allows several applications to share the domain independent files, thereby sim-

plifying configuration management(29:113-134). The UNIX make utility handles all

the necessary file processing(56).

2. Modification of the data structure. The original MGA implementation uses two

different data struct ares in the primordial and juxtapositional phase, primarily due to

memory considerations(14). The use of different data structures requires the original

implementation to use separate functions to overlay the competitive template based

upon the current phase. In the generalized version, different data structures in the

two phases requires either two overlay functions or a single, more complex function.

In order to reduce the burden on the user, the use of different data structures is

eliminated. This modification has a number of implications:

"* increased memory requirements,

"• elimination of the need to convert the data structure prior to the juxtapositional

phase, and

"* opportunity for the consolidation of large amounts of code.

3. Repeated experiments. Because genetic algorithm experiments typically involve mul-

tiple executions with different random number seeds, the generalized implementation

accepts as an input parameter the number of experiments to perform. As discussed

above, input and initialization are performed one time per execution, prior to the

first experiment. Multiple independent experiments are then performed automati-

cally within a single execution.

4. Consolidation of memory management functions. The original MGA implementation

performs memory allocation within each module which uses dynamically allocated

data structures. The incorporation of repeated experiments in a single execution

necessitates modifications to the memory management, because memory need only
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be allocated one time per execution. In the generalized implementation, all memory

is allocated prior to the beginning of the first experiment. Ceitain modules must still

initialize dynamically allocated memory prior to each experiment.

5. Addition of measure function. The GENESIS simple genetic algorithm is designed

for use as a research tool(27). As such, it includes a measure function, which records

solution quality statistics following each generation. The generalized implementation

incorporates this function.

3.4.3 Application of the Generalized MGA. Application of the generalized MGA to

a particular problem requires the design of the following domain specific algorithms and

data structures.

1. The encoding scheme maps between a domain specific representation of the variables

being optimized and the MGA representation. Specification of the encoding scheme

requires the length of a fully specified solution, the cardinality of the genic alphabet,

and the meaning of the gene's alleles for each locus in the string.

2. The domain initialization function defines the cardinality of the problem. It also

performs any necessary domain specific initialization.

3. The overlay function. This function takes as input a partial solution and a template,

both in MGA representation. The template may be a complete solution or empty.

The function must return a fully specified solution. It is generally necessary to first

convert the MGA representation of the solution to the domain representation.

4. The evaluation function. This function takes as input a fully specified solution in

MGA representation. It must assign a fitness value to the solution. It is generally

necessary to first decode the MGA representation to the domain representation.

3.5 Summary.

The requirements analysis and specifications for the generalized messy genetic algo-

rithm, are developed and presented using structured design techniques. The requirements

are documented by a problem statement and a hierarchy of balanced data flow diagrams.

51



The specifications are documented using architecture independent UNITY descriptions.

The requirements are compared to the functionality of AFIT's original MGA implemen-

tation, and the differences are addressed as design ch,;nges. For each new requirement,

design alternatives are presented and the design decisions documented. Several additional

design features beyond those necessary to meet the requirements are also documented.
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IV. Generalized MGA Performance Experiments.

This chapter describes the problems to which the generalized MGA is applied in order

to compare its performance to AFIT's original MGA implementation, the simple GA, and

the permutation simple GA. It also discusses the manner in which each of the design

steps is approached for each of the problems, the design of the performance comparison

experiments, and the results of the performance comparisons. The raw experimental data

is presented in Appendix A.

In order to assess the capabilities of the generalized MGA, a series of experiments

are performed in which the solution quality obtained by the generalized MGA is compared

to that obtained by other genetic algorithms. The objectives of the experiments are to

examine the generalized MGA's ability to solve

"* difficult functional optimization problems,

"* NP-complete combinatoric optimization problems,

"* problems of practical importance, and

"* GA-hard problems.

Deceptive and GA-hard problems, which were discussed previously (Section 2.6), are

one of the primary motivations for investigation of the MGA(23, 24, 25).

4.1 Test Problem Selection.

A number of candidate problems are considered, each of which satisfies one or more

of the above objectives:

a fully deceptive binary function(14),

* fully deceptive absolute ordering(31),

* fully deceptive relative ordering(31),

* NP-complete problems(18),
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"* DeJong functions(13),

"* polypeptide conformational analysis via minimization of the energy function.

The order-3 fully deceptive binary function problem proposed by Goldberg(20, 23)

and modified by Dymek(14) is both a difficult functional optimization problem and GA-

hard. Because it has been previously addressed, it allows direct comparison of the results

of the generalized MGA to the results of AFIT's original MGA implementation. Also,

because it is GA-hard, it clearly demonstrates the improved performance of the MGA

relative to the simple GA. This problem is selected as the first test problem (Section 4.2).

The deceptive ordering problems described by Kargupta are order-4 fully deceptive,

use string lengths of 32, and have genic alphabets of cardinality 4(31). Both are GA-hard

combinatoric optimization problems, and as such are desirable test problems. The initial

population for these problems, given by Equation 5, contains n = 44 )= 9.2 x 106

(4
solutions. Using the minimum overflow factor of 1.0, each solution requires 16 bytes for

a record header and the fitness, plus 33 bytes each for alleles and loci, for a total of 82

bytes. Thus, the memory requirement for the initial population for these problems is

approximately 720 megabytes. The MGA uses a temporary population in the process of

creating each new population, which would require an additional 720 megabytes.

No machine currently available for research at AFIT has this much memory. One

alternative to keeping the entire initial population in memory simultaneously are to keep

the population on disk. This approach would consume more than the 1226 megabytes

available on the largest disk partition. Also, because each member of the population

is accessed every generation, such an approach would quickly overwhelm the local area

network connecting the Sun workstations to the file servers.

A second alternative is to use a theoretical model of tournament selection to predict

the distribution of solutions in the initial juxtapositional phase population. Using this

approach, the initialization phase then retains only those solutions which are predicted to

receive copies in the juxtapositional phase population. The primordial phase is eliminated.

This approach allows the MGA to efficiently solve larger problems, and is expected to
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require significantly less execution time due to the elimination of the primordial phase.

An accurate model of the tournament selection process is not currently available, so this

approach is not currently feasible. The current state of the theoretical model is discussed

further in Section 8.2. Because there is no practical way to satisfy or circumvent the

memory requirement, the deceptive ordering problems are not investigated in this study.

The Traveling Salesman Problem is a classic NP-complete combinatoric optimization

problem. Because any NP-complete problem can be transformed to any other NP-complete

problem(18), the generalized MGA's performance on the TSP is representative of its per-

formance for any NP-complete problem. Because the transformation can be performed in

polynomial time(18) and the MGA itself is of polynomial time complexity, the MGA can

obtain a semi-optimal solution to any NP-complete problem in polynomial time. The TSP

has been solved previously using a permutation version of the GENESIS simple GA. Use of

the TSP as a test problem allows direct comparison of the generalized MGA's performance

to that of the permutation GA. It also demonstrates the inability of either the simple GA

or AFIT's original MGA to solve permutation problems. The TSP is selected as the second

test problem (Section 4.3).

The DeJong functions(13) are non-deceptive functional optimization problems which

are frequently used as simple genetic algorithm performance tests. The f2 function, which

is also known as Rosenbrock's saddle, is known to be difficult for simple GAs, although

it is not GA-hard(15). It is also of practical importance, because it is representative of a

class of functions found in aircraft and missile control systems(14). Use of the f2 function

as a test problem allows direct comparison of the generalized MGA's performance to that

of AFIT's original MGA and the simple GA on a difficult functional optimization problem.

This function is selected as the third test problem (Section 4.4).

The conformational analysis problem is representative of a class of computationally

difficult problems, and is also of interest due to its importance in the design of materials

with specific non-linear optical properties. The essence of the problem is the minimization

of a molecule's energy(39:296), which is usually modeled empirically by the nonlinear
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Significant reseaxch(16, 42, 48, 59) has been invested in efficient and accurate evaluation of

Equation 6. In order to benefit from this research, it is desirable to use the energy function

from an existing program as the evaluation function for the MGA. In order to do so, the

function must be callable from a C program. No such function is currently available at

AFIT (but see Chapter VIII for future research recommendations).

Thus, three problems are selected as test problems for these experiments. The fully

deceptive binary function optimization problem tests the performance of the MGA when

solving a GA-hard functional optimization problem (Section 4.2). The TSP tests the

MGA's performance when applied to an NP-complete combinatoric optimization problem

(Section 4.3). Rosenbrock's Saddle is used to test the performance of the generalized MGA

when it is used to solve a difficult functional optimization problem (Section 4.4).

For each selected problem, the parameters used for each GA are specified, and

the methodology used in selecting the parameters is described. Each of the problems

is solved using the generalized MGA, Dymek's original MGA implementation(14), and

Grefenstette's GENESIS simple GA(27). In addition, the TSP is solved using the permu-

tation version of GENESIS(27). The results obtained using each of the GAs are compared

on the basis of solution quality, which is defined appropriately for each of the problems.

All of the genetic algorithms are implemented on a Sun-4 in C (Sun Release 4.1) under the

SunOS operating system (Release 4.1.2). The C language was chosen for the generalized

MGA in order to allow reuse of the code from AFIT's original implementation.
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In order to minimize the effects of the random number generator seed, the number

of executions is selected to be large enough to assure that the results are statistically

significant. Following Dymek(14), each experiment is arbitrarily performed 40 times for

each GA. In each case, all 40 generalized MGA experiments are performed first using a

single seed. The generalized MGA performs repeated experiments in a single execution,

and records the seeds used by each of the experiments. These seeds are then used for

the corresponding experiments of the original MGA. This ensures that the two MGAs

generate the same competitive template and conduct identical tournaments during the

primordial phase. Side by side execution under the dbxtool debugger verifies that this

occurs. Slightly different behavior is observed during the juxtapositional phase beginning

in the cut and splice operation of the second generation1 .

The simple GA uses the random number sequence for different purposes than the

MGA does. For example, the MGA uses the first f random numbers to initialize the

competitive template, while the simple GA uses them to initialize the first member of

the initial population. Thus, it would be meaningless for the simple GA to use the same

random number sequence as the MGA.

4.2 Deceptive Binary Problem.

The first test problem is the order-3 fully deceptive binary functional optimization

problem addressed by Dymek(14). The problem consists of ten 3-bit subproblems. Each

subproblem is order-3 fully deceptive, and is described by the mapping in Table 4. The

total fitness of a solution to the full problem is the sum of the fitnesses of the solutions to

the subproblems.

The encoding scheme for the function is based on a string of thirty genes and a

binary genic alphabet, as defined by Goldberg(23). The bits corresponding to a particular

subrroblem are separated within the string, as shown in Table 5. Separation of the genes

increases the defining length of important building blocks, thus making the deceptive

problem GA-hard.

'This is currently unexplained, but may be due to the correction of a bug in the original implementation.
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Alleles Fitness
000 28
001 26
010 22
011 0
100 14

101 0
110 0
111 30

Table 4. Order 3 Deceptive Function Subproblem Fitnesses

Subproblem Loci

1 1 6 11
2 2 7 12

3 3 8 13
4 4 9 14

5 5 10 15
6 16 21 26

7 17 22 27
8 18 23 28
9 19 24 29
10 20 25 30

Table 5. Order 3 Deceptive Function Subproblems
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Parameter Value
Random Seed 123456789
Experiments 40
String Length 30
Block Size (1 - String-Length) 3
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 3
Total Reductions 4
Shuffle Number (>1) 30
Cut Probability 0.0166667
Splice Probability 1.0
Total-Generations 19
Overflow (>1.0) 1.6
Selection method (T/P) T

Table 6. Fully Deceptive Function Generalized MGA Input Parameters

The domain initialization function defines the cardinality of the genic alphabet to

be 2, corresponding to a binary genic alphabet. The overlay function accepts as input a

partial solution and a competitive template, both in MGA representation. It produces a

fully specified solution by selecting genes corresponding to unspecified loci first from the

partial solution, then from the competitive template.

The evaluation function accepts as input a fully specified solution in MGA repre-

sentation. It returns the fitness of the solution, which is simply the sum of the fitness

contributions from each subproblem.

4.2.1 Experimental Design. The parameters for the generalized MGA experiment

are shown in Table 6. The encoding scheme described earlier determines the string length

and genic alphabet cardinality. The MGA ignores the genic alphabet parameter. The

block size is selected to match the known level of deception in the function.

The reduction rate, reduction interval, and total number of reductions are selected to

correspond as closely as possible to those used by Goldberg(23:513-514). Goldberg reports

that for this problem the population size, which begins at 32,480, "is cut in half every

other generation ... until it reaches size n = 2030 [and] the primordial phase is terminated

... after generation 11." This indicates a total of four reductions, either in generations 1,
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3, 5, and 7 or 2, 4, 6, and 8. In either case, additional primordial phase generations are

specified after the last reduction. Both AFIT's original implementation and the generalized

implementation terminate the primordial phase after the last reduction. To ensure that

the total number of reductions and the total number of primordial phase tournaments are

as close as possible to those used by Goldberg, a reduction interval of 3 is selected.

Following Goldberg, a shuffle number equal to string length is used(24:427). Sim-

ilarly, the bitwise cut probability is chosen as a function Pk = 1 of the string length,

which results in an overall cut probability of Pc = Pki = 0.5 for a fully specified string.

Goldberg states that this "corresponds roughly" to the crossover probability of 1.0 used

for the simple genetic algorithm(23:514). This seeming discrepancy is most likely due to

a desire to foster rapid string growth in the juxtapositional phase. Deb shows that when

Pk < 1, the average string length almost doubles every generation(10). Therefore, in the

initial generations of this experiment, when Pc <K 1 for most strings in the population,

the average string length grows rapidly. In the fourth and later generations, the average

string length is such that p, ; 1.0 for most strings in the population, and string growth

is minimal. Similarly, the splice probability for this experiment is chosen to match that

used by Goldberg, which is in turn based on the crossover probability used for the simple

genetic algorithm.

Goldberg used a total of 30 generations, of which 11 were in the primordial phase.

Therefore "Total-Generations" parameter, which specifies the number of juxtapositional

generations, is chosen to be 19. The overflow factor specifies the maximum ratio by which

actual string length may exceed nominal string length. Goldberg estimates the probability

of a previously expressed schema not being expressed given placement in the back of a

spliced pair as

P(NIB) < 1 - (1 k(7)

where N is the event that the schema is not expressed, B is the Ovent that the schema is

placed at the back of a spliced pair, k is the block size, A* is the maximum string length in

the population, and I is the nominal string length. Figure 29 shows that for the block size

and string length associated with this problem, overflow factors ,*/1 > 1.6, result in less
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Figure 29. Probability of Non-expression of Schema as a Function of Overflow Factor
(k/I = 0.1)

than a 1% chance that a schema is not expressed when it is placed at the end of a spliced

pair. Dymek uses an overflow factor of 1.6, which is shown to provide a low probability

of schema loss. Larger overflow factors do not significantly reduce the probability, and

smaller overflow factors do not significantly reduce either the memory requirement or the

execution time. Because there is no compelling reason to choose a different value, Dymek's

value is adopted for this experiment.

With the exception of the reduction interval and the genic alphabet, the parameters

for the original MGA experiments are the same as those for the generalized MGA. In the

original MGA the reduction interval specifies the number of non-reducing tournaments per

reduction excluding the reducing tournament, while in the generalized MGA it specifies

the number of tournaments per reduction including the reducing tournament. Thus, to

achieve the same behavior, the reduction interval for the original MGA must be specified

to be one less than that for the generalized MGA.

Unlike the generalized MGA, the original MGA uses the genic alphabet parameter.

The cardinality is assigned the length of the string used to define the genic alphabet. For

this experiment, the cardinality is 2. The characters used to define the genic alphabet are

61



Parameter Value
String Length 30
Block Size (1 - String.Length) 3
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 2
Total Reductions 4
Shuffle Number (>1) 30
Cut Probability 0.0166667
Splice Probability 1.0
Total-Generations 19
Overflow (>1.0) 1.6
Selection method (T/P) T

Table 7. Fully Deceptive Function Original MGA Input Parameters

arbitrary. This experiment uses the characters "0" and "1," which are intuitively appealing

because of their common use in boolean logics.

The relevant parameters for the simple genetic algorithm experiment, which are

shown at Figure 8, are chosen to allow as direct a comparison as possible to the messy

genetic algorithm. The population size is chosen to match the juxtapositional population

size of the MGA. The total number of trials is

T = N, + NIG (8)

where Ni is the initial population size, N1 is the juxtapositional population size, and G

is the number of juxtapositional generations. The primordial phase contribution is due

only to the initial population because later primordial generations do not evaluate new

solutions.

Following Goldberg, the crossover rate is chosen to be 1.0, and the mutation rate

is chosen to be 0.0. Because we are concerned only with the overall best solution quality

obtained as opposed to the average solution quality over time, a generation gap of 1.0 is

chosen. This is consistent with other "generational" genetic algorithm experiments.

GENESIS is designed to minimize functions, and modification to perform maximiza-

tion requires changes to multiple modules. Such modification unnecessarily introduces
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Parameter Value
Experiments 40
Total Trials 71050
Population Size 2030
Structure Length 30
Crossover Rate 1.000
Mutation Rate 0.000
Generation Gap 1.000
Random Seed 123456789

Table 8. Fully Deceptive Function Simple GA Input Parameters

Alleles Fitness

000 2
001 4

010 8
011 30
100 16
101 30
110 30

111 0

Table 9. Order 3 Deceptive Function Subproblem Fitnesses

significant risk of programmer error. Rather than modify GENESIS to perform function

maximization, a modified version of the test function is minimized. The simplicity of the

test function and greater familiarity with the code imply a lower risk of programmer error.

Subproblems of the modified function have the fitnesses shown in Table 9, which are equal

to the original fitnesses subtracted from the maximum fitness. Thus, the modified function

has a global minimum of 0, in contrast to the original function's maximum of 300. The

final solutions for each experiment are subtracted from 300 to allow direct comparison with

solutions obtained using other methods.

4.2.2 Results. The mean solution found by the generalized messy genetic algorithm

has a fitness of 297.15, while that of the original messy genetic algorithm has a fitness of

298.20. The Kruskal-Wallis H test for these samples has an H-value of 5.671875, which

indicates statistical significance at the 2.5% significance level. Therefore, the generalized
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messy genetic algorithm does not perform as well as the original implementation for this

problem. After adjusting the solutions obtained by GENESIS to allow comparison with

the messy genetic algorithm data, the mean solution has a fitness of 285.35, and the

Kruskal-Wallis H test comparing them to the generalized MGA solutions yields an H-value

of 57.567801, which is sufficient to indicate statistical significance at the 0.5% level. The

generalized messy genetic algorithm clearly outperforms the simple genetic algorithm on

this problem.

4.3 Combinatoric Optimization: Traveling Salesman Problem.

An instance of the TSP consists of a complete graph 9(V, C), wherc each vi E V =

{1,2,3,..., N} is a node representing a city, and each ciC E & is an edge having a corre-

sponding weight dij representing the distance between two cities. A solution to the TSP is

a permutation P = P1P2P3...PN of the vertices, representing a tour such that the total cost

of the tour
N

C = d,,p (9)

is minimized, subject to the additional constraint that the subgraph Q' containing the

edges E' = {e, : 1 < i < N} consists of a single cycle.

The encoding scheme for the TSP is based upon a string of length N and a genic

alphabet of cardinality N. Each gene in the string represents an element pi in a tour,

where i is the gene's locus. The gene's allele j identifies the city which follows city i in the

tour. The domain initialization function loads or randomly generates a matrix containing

the distances di,. It also assigns the cardinality of the genic alphabet to be equal to N.

The overlay function takes as input a partial tour and a template, both in MGA

representation, and produces a fully specified and valid solution. In order to be valid,

the specified tour must include each city exactly once, and consist of exactly one cycle.

An example of a tour which satisfies the first constraint but not the second is shown in

Figure 30. The algorithm used is an extension to the nearest neighbor algorithm taken

from Grefenstette's GENESIS TSP program which ensures that a tour contains each city

exactly once(27). The high level statement of the algorithm is presented in Figure 31.
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Figure 30. Invalid TSP Tour Containing Multiple Cycles

1. freecount 4- N - 1;

2. Vi: 1 < i < N :: freelist [i] - i, where [Ul +- i, tour[i] +- -1

3. Include partial tour in tour

4. if (freecount = 0) exit;

5. Include competitive template in tour

6. if (freecount > 0) use freelist to complete valid tour

Figure 31. TSP Overlay Function Algorithm

In this algorithm, the fully specified tour is built in tour, freecount is the number of

unvisited cities currently in tour, freelist is a list of the unvisited cities, and where is

an index into freelist. The details of step 3 are shown in Figure 32. Essentially, the

algorithm examines each gene in the partial tour to determine whether or not it can be

added to the tour without violating one of the above constraints. In order to do so, it

must ensure that the destination city specified by the gene is not already included in the

tour, and that adding the edge from the source city to the destination city does not result

in a cycle of length less than N. Each time a city is added to tour, it is removed from

freelist, which is then compressed. Step 5 of the high level algorithm is very similar to

step 3, with the obvious difference that all references to the partial tour are replaced by

references to the competitive template. The details of step 6 are shown in Figure 33. The

algorithm selects an arbitrary city from freelist to be the "start" city, and removes it

from freelist. It then follows the path defined by tour beginning at the start city until

it finds an unspecified city. It again selects an arbitrary city from freelist to be the

"destination" city, adds it to tour, and removes it from freelist. This is repeated until

no more cities remain in freelist, at which time the "start" city is added to tour in the

last remaining position.

65



For each gene E partial-tour,

1. source +- gene.locus, dest 4- gene.allele

2. If (deste : source) A-,(dest E tour)

(a) city ,- tour [dest], k +- 0

(b) Repeat city •- tour[city), k -- k + 1 until -(tour[city) E {1..N})V (city =

source)

(c) If -(tour [city] E {l..N}) V (k = N - 1) remove dest from freelist (and compress
freelist)

i. tour[source) .- dest

ii. index 4- where [dest]

iii. lastcity 4- freelist [freecount)

iv. freecount +- freecount -1

v. freelist[index] - lastcity

vi. where[lastcityJ •- index

Figure 32. Include Partial Tour Algorithm

The evaluation function for the TSP takes as input a fully specified solution in MGA

representation and returns the fitness of the solution, as given by Equation 9.

4.3.1 Experimental Design. The specific instance of the TSP selected for the per-

formance experiment has 12 cities, which is the largest problem for which sufficient memory

is available to contain the resulting initial population. The distance matrix is neither sym-

metric nor Euclidean, so the validity of the experimental results is not limited to problems

in those classes. The parameters for the generalized MGA experiment are shown at Ta-

ble 10. Again, the encoding scheme determines the string length and cardinality. The

domain initialization function for the TSP application of the generalized MGA assigns a

cardinality of 12, corresponding to the number of cities. The block size is chosen to be the

suspected order of dec( -ion in the problem. It is very unlikely that an arbitrary instance

of the TSP is fully deceptive at order 3 or higher. On the other hand, a block size of 1 re-

sults in a very small initial population size, given by Equation 5 as n = 121( = 144.

Therefore, a block size of 2 is chosen.
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1. start +- freelist[O];

2. Remove start from freelist (and compress freelist)

(a) index +- where[start]

(b) lastcity 4- freelist[freecount]

(c) freecount +- freecount -1

(d) freelist [index) 4- lastcity

(e) where[lastcity] •- index

(f) where [start] +- -1

3. dest -- start, source -- dest

4. Repeat dest 4- tour[source], source ,- dest until -'(tour[source] E {1..N})

5. while (freecount > 0)

(a) 1 -- 0

(b) Repeat dest - f reelist[/], 1 4- 1 + 1 until dest $ source

(c) Remove dest from freelist (and compress freelist)

i. index •- where[dest]

ii. lastcity 4- freelist[freecount)

iii. freecount - freecount -1

iv. freelist [index] 4- lastcity

v. where Elastcity) 4- index

vi. where[dest] •--1

(d) tour[source) 4- dest;

(e) Repeat dest ,- tour [source], source ý- dest until -'(tour [source] E {1..N})

6. tourEdest] 4- start;

Figure 33. Complete Tour Algori hm
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Parameter Value
Random Seed 123456789
Experiments 40
String Length 12
Block Size (1 - String-Length) 2
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 3
Total Reductions 2
Shuffle Number (>1) 12
Cut Probability 0.0416667
Splice Probability 1.0
Total-Generations 24
Overflow (>1.0) 2.4
Selection method (T/P) T

Table 10. TSP Generalized MGA Input Parameters

In this application, the initial population size n = 122 )= 9504 is smaller
(2

than that of the fully deceptive binary function. Only 2 reductions are required to obtain

a juxtapositional population size of the same order as that used in the previous experiment.

Again, a shuffle number equal to string length is used. The cut probability is again

chosen to be pk = -, and the splice probability is held at 1.0. An overflow factor of 2.4,

obtained from Figure 29, is used to maintain the same probability of schema expression

used in previous experiments.

Goldberg does not discuss the selection of the reduction interval. In order to select

an appropriate selection interval, a preliminary experiment is performed, in which the

reduction interval is varied from 1 to 4 and the "Total-Generations" parameter is adjusted

to hold the total of primordial and juxtapositional generations fixed at 30. The remaining

parameters are held constant at the values specified above. Initial experiments in which

the generalized MGA is executed 40 times for each reduction interval failed to result in

statistically significant differences in solution quality. In order to increase the probability

of detecting any such differences, the experiment is repeated, and the generalized MGA

execlited 400 times for each interval. The mean tour lengths resulting from each of the

reduction intervals are given at Table 11, along with the optimal tour length.
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Reduction Interval Mean Tour Length
1 1474.8075
2 1488.9300
3 1478.6100
4 1507.6275

Optimal 1410.0000

Table 11. Preliminary TSP Experiment Mean Tour Lengths

Reduction
Intervals k X H value Reject H0 ?
1, 2 2 3.8415 2.422517 No
1, 3 2 3.8415 0.013097 No
1, 4 2 3.8415 9.020059 Yes
2, 3 2 3.8415 2.551348 No
2, 4 2 3.8415 2.249045 No
3, 4 2 3.8415 9.020059 Yes
1, 2, 3 3 5.9915 3.324822 No
1, 2, 4 3 5.9915 9.130928 Yes
1, 3, 4 3 5.9915 12.037575 Yes
2, 3, 4 3 5.9915 9.215521 Yes
All 4 7.8147 12.642195 Yes

Table 12. Preliminary TSP Experiment Kruskal-Wallis H Test Results

In order to determine whether or not the observed differences in solution quality can

be considered significant, the results are compared using the Kruskal-Wallis H Test. A

total of eleven tests are performed in order to identify one reduction interval which results

in statistically better performance than the others. Each independent sample is compared

to the other three in turn, the samples are tested in groups of three, and all four samples

are tested together. The experimental data are compared at the 5% level of significance,

which gives a critical values of X2,0.05 = 3.8415 for pairwise comparisons, X2,0.05 = 5.9915

for comparisons involving three of the independent samples, and 2X 05 = 7.8147 for the

comparison involving all four of the samples. The results of the comparisons are given at

Table 12. The test rejects the null hypothesis only in cases involving a reduction interval

of 4, which results in statistically worse solutions. Therefore, we can safely choose the

reduction interval to be either 1, 2, or 3. To maintain consisitency with the deceptive

binary experiments, a reduction interval of 3 is used.

69



Parameter Value
Random Seed 123456789
Experiments 40
String Length 12
Block Size (1 - String.Length) 2
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 2
Total Reductions 3
Shuffle Number (>1) 12
Cut Probability 0.0416667
Splice Probability 1.0
Total-Generations 24
Overflow (>1.0) 2.4
Selection method (T/P) T

Table 13. TSP Original MGA Input Parameters

The parameters for the experiment using AFIT's original MGA implementation are

again based on those used in the generalized implementation (See Table 13). In order to

produce the same number of primordial generations per reduction, the reduction interval

for the original implementation is specified to be 2. The remaining parameters are identical.

The absence of an overlay function in the original MGA implementation allows evalu-

ated strings to represent invalid solutions to the TSP problem. A common approach to op-

timizing constrained problems with genetic algorithms is the use of penalty functions(21:85-

86). In this experiment, a penalty is incorporated into the fitness function which assigns

a very poor fitness to any string which does not represent a valid solution. No distinction

is made based upon how "close" a string is to representing a valid solution. Thus, every

invalid solution has the same fitness, which is worse than the fitness of any valid solution.

The parameters for the simple genetic algorithm experiments, given in Table 14,

are also chosen to produce behavior as close as possible to the messy genetic algorithm's.

The population size is chosen to match the messy GA's juxtapositional population size,

and the number of trials is determined from Equation 8 to be 9504 + 2376 x 24 = 66528.

The remaining parameters are unchanged from the deceptive binary function experiment.

The parameters for the experiments using the permutation version of the simple genetic

algorithm are identical to those for the experiments using the standard version. Both
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Parameter Value
Experiments 40
Total Trials 66528
Population Size 2376
Structure Length 12
Crossover Rate 1.000
Mutation Rate 0.000
Generation Gap 1.000
Scaling Window 5
Report Interval 2000
Structures Saved 1
Max Gens w/o Eval 2
Dump Interval 0
Dumps Saved 0
Options lc
Random Seed 123456789

Table 14. TSP Simple GA Input Parameters

simple genetic algorithm experiments use the same fitness function, including the penalty

for invalid solutions, which the original MGA experiment uses.

4.3.2 Results. The best solutions found by the generalized messy genetic algorithm

have a mean fitness of 1460.300, where the optimal tour length is 1410. None of the

experiments using either the original MGA or the simple GA identify valid solutions. The

generalized MGA clearly outperforms both the original MGA and the simple GA on this

problem.

The best solutions found by the permutation GA have a mean fitness of 2046.275. The

Kruskal-Wallis H test comparing the solution quality of the generalized MGA to that of the

permutation GA has an H-value of 59.259259, which indicates statistical signficance at the

0.5% level. The generalized messy genetic algorithm clearly outperforms the permutation

genetic algorithm on this problem. This may be due to the relatively small problem size,

and should not interpreted as an indication that the same would be true for large instances

of the TSP or other permutation problems.
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Figure 34. Linear Plot of Rosenbrock's Saddle

ab.4 Functional Optimization: Rosenbroak's Saddle.

Rosenbrock's Saddle, also known as DeJong function the fistive classical GA

test functions identified by DeJong(13). The function is a non-linear, non-convex function

of 2 variables, having a deep parabolic valley. It is described by the equation

f2 -- 1O0(X2 _ Y/)2 _ (1 _ X)2 (10)

A plot of the function is given at Figure 34. The first term of the function is symmetric

about the x-axis, having a minimum at points satisfying the relation y = X2 . The second

term, the contribution of which is much smaller than the first term, has a minimum of

zero only at the point x = 1. The function has one minimum at the point x = 1, y = 1.

The differences in the values along the parabola are not very large, especially relative to

the maximum values (poor solutions).

4.4.1 Experimental Design. Following Dymek, the encoding scheme for the Rosen-

brock's Saddle application is based upon a string of length 24 and a binary genic alphabet

(14:33). Each of the independent variables is restricted to the range between -2.048 and
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Parameter Value
Random Seed 123456789
Experiments 40
String Length 24
Block Size (1 - String-Length) 3
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 1
Total Reductions 3
Shuffle Number (>1) 24
Cut Probability 0.0208333
Splice Probability 1.0
Total-Generations 27
Overflow (>1.0) 1.6
Selection method (T/P) T

Table 15. Rosenbrock's Saddle Generalized MGA Input Parameters

2.047 and discretized in even increments of 0.001. Each is then encoded as a 12-bit binary

string.

The domain initialization function defines the cardinality of the genic alphabet to

be 2, corresponding to a binary genic alphabet. The overlay function accepts as input a

partial solution and a competitive template, both in MGA representation. It produces a

fully specified solution by selecting genes corresponding to unspecified loci first from the

partial solution, then from the competitive template.

The evaluation function takes as input a fully specified solution in MGA representa-

tion. It returns the fitness of the solution, as determined by Equation 9.

As with the deceptive binary problem and the combinatoric optimization problem,

the encoding scheme for the functional optimization problem determines the string length

and cardinality for the functional optimization experiments using the generalized messy

genetic algorithm. The remaining parameters, shown at Table 19, are selected in similar

fashion to the previous experiments. The domain initialization function, independent of

the genic alphabet specified in the input file, generates a binary genic alphabet and assigns

a cardinality of 2. Rosenbrock's saddle is known to not be deceptive(15), so the block

size is selected based only on initial population size considerations. Population size as a

function of block size for this encoding scheme is shown at Table 16. In order to produce
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Block Size Population Size
1 48
2 1,104
3 16,192
4 170,016

Table 16. Initial Population Size as a Function of Block Size

Reduction Interval Mean Solution Fitness
1 0.0087898675
2 0.0974485850
3 0.0395790650
4 0.1151387764

Table 17. Preliminary Functional Optimization Experiment Mean Solution Fitnesses

an initial population size of the same magnitude as that used in previous experiments, a

block size of 3 is selected. Three reductions are then required to obtain a juxtapositional

population size in the typical range. The shuffle number and the cut probability are once

again chosen based on string length, and the splice probability is held at 1.0. An overflow

factor of 1.6 is sufficient to provide negligible probability of schema loss (See Figure 29).

A preliminary experiment similar to the one performed for the TSP experiment is

performed to select a reduction interval. The reduction interval is again varied from 1

to 4, the "Total-Generations" parameter adjusted to maintain a total of 30 primordial

and juxtapositional generations, and the remaining parameters held constant at the values

specified above. In order to ensure statistically significant results, each experiment is

conducted 400 times. The mean solution fitnesses are given at Table 17. As discussed

above, the optimal solution to Rosenbrock's Saddle has a fitness of 0.

The results of the preliminary experiment are again compared using the Kruskal-

Wallis H Test at the 5% level of significance. The results of the comparisons are given

at Table 18. The test rejects the null hypothesis in every case, indicating that different

reduction intervals result in statistically different solution populations. Because a reduction

interval of 1 results in the lowest mean, this value is used in further experiments.
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Reduction
Intervals k X_2 H value Reject HO?

' k-l.0.05

1, 2 2 3.8415 418.450955 Yes
1, 3 2 3.8415 263.864261 Yes
1, 4 2 3.8415 490.984549 Yes
2, 3 2 3.8415 163.141650 Yes
2, 4 2 3.8415 163.141650 Yes
3, 4 2 3.8415 267.795592 Yes
1, 2, 3 3 5.9915 547.580796 Yes
1, 2, 4 3 5.9915 615.372328 Yes
1, 3, 4 3 5.9915 657.768561 Yes
2, 3, 4 3 5.9915 297.245356 Yes
All 4 7.8147 786.600884 Yes

Table 18. Preliminary Rosenbrock's Saddle Experiment Kruskal-Wallis H Test Results

The parameters for the original MGA experiment are once again based on those

used in the generalized MGA experiment (See Table 19). The reduction interval for the

original implementation is specified to be 0, which specifies that every primordial gener-

ation includes a population reduction, as in the generalized experiment. The remaining

parameters are identical.

The parameters for the simple genetic algorithm experiments are given in Table 20.

The population size matches the messy GA's juxtapositional population size, and the num-

ber of trials is calculated using Equation 8 to be 16192+ 2024 x 27 = 70840. The remaining

parameters are unchanged from the deceptive binary function and TSP experiments.

4.4.2 Results. The best solutions found by the generalized messy genetic algorithm

have a mean fitness of 0.0083415, where the optimal is 0. The best solutions found by the

original messy genetic algorithm have a mean fitness of 0.2737781951. The Kruskal-Wallis

H test for these samples has an H-value of 18.595382, which indicates statistical signifi-

cance at the 0.5% significance level. Therefore, the generalized messy genetic algorithm

outperforms the original implementation for this problem.

The best solutions found by the simple genetic algorithm have a mean fitness of

0.0003242341, and the Kruskal-Wallis H test comparing them to the generalized MGA so-

lutions yields an H-value of 48.267037, which is sufficient to indicate statistical significance
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Parameter Value
Random Seed 123456789
Experiments 40
String Length 24
Block Size (1 - String-Length) 3
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 0
Total Reductions 3
Shuffle Number (>1) 24
Cut Probability 0.0208333
Splice Probability 1.0
Total-Generations 27
Overflow (>1.0) 1.6
Selection method (T/P) T

Table 19. Rosenbrock's Saddle Original MGA Input Parameters

Parameter Value
Experiments 40
Total Trials 70840
Population Size 2024
Structure Length 24
Crossover Rate 1.000
Mutation Rate 0.000
Generation Gap 1.000
Scaling Window 5
Report Interval 2000
Structures Saved 1
Max Gens w/o Eval 2
Dump Interval 0
Dumps Saved 0
Options cel
Random Seed 123456789

Table 20. Rosenbrock's Saddle Simple GA Input Parameters
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Experiment Original MGA Simple GA Permutation GA
Deceptive Marginally Generalized
Binary Outperforms MGA N/A
Problem Generalized Outperforms

MGA
Combinatoric Unable to Unable to Generalized
Optimization Find Valid Find Valid MGA
Problem Solution Solution Outperforms
Functional Generalized Outperforms
Optimization MGA Generalized N/A
Problem Outperforms MGA I _I

Table 21. Summary of Relative Performance

at the 0.5% level. The simple genetic algorithm clearly outperforms the generalized messy

genetic algorithm on this problem. Two possible causes of the MGA's poorer performance

are

"* the presence of nonuniform building block sizes(24), and

"* the high degree of convergence obtained via tournament selection in the primordial

phase.

Further investigation of these possibilities is recommended.

4.5 Summary.

Experiments are performed which compare the performance of the generalized MGA

to that of AFIT's original MGA and to the GENESIS simple GA. The results of those ex-

periments are summarized in Table 21. The generalized MGA obtains better solutions than

the other three GAs with two exceptions. First, the original MGA performs marginally

better on the deceptive binary function problem. Second, the simple GA performs better

on DeJong function f2. The former is possibly a side effect of a correction of a bug in the

generalized implementation cut and splice operator which affects the frequency with which

the cut operator is applied. The latter is possibly due to non-uniform building block size

and/or scaling. Both cases merit further investigation.
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V. Parallelization of the Messy Genetic Algorithm.

Dymek's measurements(14) show that for some problems, as much as 87% of exe-

cution time of the messy genetic algorithm is spent in the primordial phase, indicating

that reasonable speedup demands parallelization of the primordial phase. This chapter de-

scribes four parallel implementations of the messy genetic algorithm, each of which exploits

the data parallelism present in the primordial phase (Section 5.1). It also describes ex-

periments comparing the execution time and solution quality of the four implementations

(Section 5.2), and the results of those experiments (Section 5.3).

5.1 Initial Population Distribution Strategies.

As discussed in Section 2.7, parallel implementation of an algorithm can be accom-

plished by mapping its UNITY description to the particular architecture in question(6).

Because the parallelization effort in this study focuses on the primordial phase, the map-

ping begins with an examination of the Conduct Tournament-Selection process specifica-

tion (See Figure 24). The assign section of the process description contains four groups

of statements. The first group describes the initialization of the candidate-found and per-

mutation data structures. The second describes the use of the permutation data structure

to "shuffle" the distribution data structure. The third group of statements describes the

tournament selection itself, in which the newdistribution data structure is built from the

distribution and permutation data structures. The final group of statements copies the

newdistribution data structure back to the distribution data structure to prepare for the

next tournament.

An arbitrary statement S,, 1 < i < POP-SIZE, from the second group, assigned to

processor Pj, 1 < j < m, may reference any variable in the distribution data structure, de-

pending upon the random initialization of the permutation data structure. Variables must

be allocated to the same processor as any statements which reference them. Therefore, all

of the variables in the distribution data structure must be allocated to Pj. The remaining

statements from the second group may also reference variables from the distribution data

structure, and consequently must I . allocated to Pj. By similar reasoning, all of the vari-
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ables in the permutation data structure must be allocated to Pj. Each of the statements

belonging to one of the other three groups references at least one variable belonging to

either the distribution or the permutation data structure. Therefore, they must also be

allocated to Pj. Likewise, the remaining variables referenced by those statements must be

allocated to Pj.

While the tournament selection algorithm is shown to be inherently sequential, ap-

proximations exist which are parallelizable. The modified algorithm is obtained by first

arbitrarily allocating the variables of the original algorithm to processors and then modi-

fying the statements in such a way that each statement references only variables which are

allocated to a single processor. Thus, tournaments are conducted only between solutions

for which the distribution variables are allocated to the same processor. Because there are

many ways to arbitrarily allocate the variables to the processors, there are many possible

parallel tournament selection algorithms.

By observing that the mapping between the distribution data structure and the

actual solutions is determined by the Initialize-.Population process, it can be shown that all

parallel tourament selection algorithms which are designed in this manner are functionally

equivalent. The UNITY description for one such algorithm is shown at Figure 35. This

algorithm may be directly mapped to a distributed memory architecture by allocating to

the same processor those statements which share the same value of j.

The number of distribution variables, and therefore solutions, allocated to each pro-

cessor is determined by the SUBPOP-SIZE data structure, which is initialized by the

Initialize-Population process. The actual solutions which are assigned to the same sub-

population is determined by the mapping from the distribution data structure to the pop

data structure, which is also defined by the Initialize-Population process. The remainder

of this section presents four versions of the Initialize-Population process, each of which

describes a different partitioning and mapping of solutions to the processors.

The first strategy, called the "indexed" strategy, is discussed by Dymek but not

implemented. It assigns building blocks to processors using an interleaving scheme, using

the block's first defined locus as the interleaving key. The UNITY description for this
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Function Coredut-cParalleLTourrnamenL-Selection
declare

distribution array [i..SUBJ'OP-SIZ4]j] of integer
permutation array [1..SUBJ-'OP..SIZIjJ] of integer

n~h integer
0 integer
popindex integer
candidate-found array [1..SUB-POP..SIZEfjI] of boolean
tourn-seq integer

always
candi = distribution[SUB..POP..SIZED] + popindez]
cand2 =distribution[SUBJ-POP.SIZE[,) + ((popinde.T + i mod SUBJ'OP.SIZF4.u) + 1)]

0 = P~Z]
compatible = 9 < I candl.loci nl cand2.loci
SUB-POP-STARITjI T-'Z SUB-POP-SIZEi.7

initially
tourn-seq =0

assign

VIiV:: 1 < i < S U-P OP-SIZLbI::
candidate-found[SUB-POP-STAR7D] + iI, permutation[SUB-POP.STAR7171 + t] n~h, tourn-seq:
FALSE, Random(POP-SIZE) 1, 1 )

)if touTL-seq = 0 A conduciitournament

(f V i: 1 < i < SUB-POP-SIZ4bI:
distributio;[SUBJ'OP-STAR71;1 + :1, disiributiondpermutationifSUB-POP-STARMh + s]], tourn-seq
distiributionfpermutationjSUB..POP-STAR~hI + i]j, distribution[SUBJ'0P-S-TARMh + s], 2

)if tourrL-seq = 1

(l1V popiudex: I < popindex < SUB-.POP.SIZ41a
(lVs 1 < i ýý n8 h A-candidate-fotnd[popindex]

candiate--j und[popindex] 7Lewdistribution4popinde3x], tourn-seq
TRUE, candl, 3

if (fitness(candl) > fit~ness(cand2) V
(fitness(candl) = fitness(candl2))A \I < A\2) A
compatible)

TRUE, cand2, 3
if (fitness(cand2) > fitness(candl) V

(fitneas(candl) = filness(cand2))A Al > A2) A
compatible)

FALSE, can dl, 3
if -. compatible

)if tourn-seq = 2

V i: 1 < i < SUB-POP-SIZE~j1:
distributio-n[SUB..POP-STAR~rij + i], conduct-tournament, tourn..seq
neiudistribution[SUB-J-OP-STAR7h1 + 1J, FALSE, 0 if candidate-found[SUB..POP-STARMh + i]

)if tourn-seq = 3

end { Conduct J'aralleL Tournament-Selection4)}

Figure 35. UNITY Description of the Parallel Conduct Tournament Process
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Nodes 0 1 2 3 4 5 6 7 Variation
1 3 2 4 8 0 - - - --- I2 19584 12896 - - - - 52%

4 10752 8832 7168 5728 - - 88%
8 5632 5120 4640 4192 3776 3392 3032 2696 109%

Table 22. Indexed Distribution Strategy Allocation

strategy is presented at Figure 36. Using this strategy on m processors, each processor j,

0 < j < m, is allocated

Nj = E- ) (11)

solutions, where 1 is the string length, k is the block size, and

I = R(, - j)/M] - 1. (12)

Thus, use of this strategy for a 30-bit problem with a block size of 3, allocates solutions

to processors as shown in Table 22. This strategy allocates significantly more solutions

to some processors than to others. In cases where the number of processors is greater

than the string length, some processors are not allocated any solutions. Based upon these

observations, Dymek rejects this strategy because of anticipated poor load balancing(14).

The second strategy, "modified indexed" distribution, is also discussed by Dymek

but not implemented. It is a modification of the first strategy in which the first defined

locus is greater than the number of processors are assigned to processors in reverse order.

The UNITY description for this strategy is presented at Figure 37. Using this strategy on

m processors, each processor j, 0 < j < m, is allocated

Nj =( j ) + 1)+ j(13)Nk k-1 k= k-1

solutions. Thus, use of this strategy for the same problem allocates solutions to processors

as shown in Table 23. This strategy allocates solutions more evenly than the indexed

strategy, although there is still some imbalance. In cases where the number of processors
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Function Initialize.Population
declare

lock boolean
loci array JO..k] of integer

initially
lock = FALSE
popindex = 0
(Vi: 0< i< k:: locilf] = k-i- )
(V i: 0 < i < POP.SIZE:: distribution[t] = i)

always
I ---r(l-j)/ml -1

(V j: 0 << im:: SUB-POPSIZEt,1

xE ( -~r 1 )
assign

(GV i: 0 <_ i < (k N:

(IIVj: 0_< < k::
pop[O][popindex].allelebj,
pop[O][popindex].loci1] :=
huilding.block[i mod Ck].allel;e],
locij]3

)
I1 ( distribtion[•ubpopindex[loctlo]]], subpopindezfloci[O]], lock,
subpopindezfloc:iO]], subpopindex[loci[O]] + 1, TRUE

if (popindex mod Ck 0 0) V (lock = FALSE)
IIYlj: 0_< j< k:

locibJ, lock :=

lociD] + 1, FALSE
if (Vn: 1 < n < j :: locin] = loci[n- 1)- 1)

A loci[j] = I - 1
A loci[] < loci[j - 1] - 1
A(popindex mod Ck = 0)
A(lock = TRUE)

0, FALSE
if (Vn: I < n j:: loc4,4=loci[n - 11n - I)

A(popinder mod C"k = 0)
A(lock = TRUE)
A loci[o] = l - 1

)

end fInitialize-Population}

Figure 36. Indexed Initialize Population Process

Nodes 0 1 2 3 4 5 6 7 Variation
1 32480 - - - - - - - -
2 15624 16856 - - - - - - 8%
4 7536 7888 8296 8760 - - - - 16%
8 4096 4032 3992 3976 3992 4040 4120 4232 6%

Table 23. Modified Indexed Distribution Strategy Allocation
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Function Initialize.Population
declare

lock boolean
loci : array [O..k] of integer

initially
lock = FALSE
popindez = 0
(V i: 0_< i < k.: loci[,] = k- i- 1)
(V i: 0 < i < POP.SIZE:: distribution[s] i

always
I = [(l- j)/ml - 1

(V j- 0 <_ j < m.:: SUBPOPSIZED=

assign

(
(11V j: 0_< j< k:

pop4O][popinde,].allelej,
pop[0][popindex].locsjl :=
building.block[i mod Ck].alleleDI,
loci[D]

fl( distribution[subpopindel[loci[O]]], aubpopinder[locsio]], lock,
snbpopindexl[oc41O]], subpop indez[loci[o]] + 1, TRUE

) if (popindex mod Ck # 0) v (lock = FALSE)
VIIl: 0 <<j< k::
lociDj, lock :=
loci•fj + 1, FALSE
if (Vn: 1 < n < j :: loct•n] = locifn- 1J- 1)

A loci[O] = I - 1
A lociDj < lociUj- 1]- 1
A(popindex mod Ck = 0)
A(lock = TRUE)

0, FALSE
if (Vn: 1 < n•< j:: lociin] = loci[n - 1]- I)

A(popindex mod CG = 0)
A(lock = TRUE)
A loci[0O = I - 1

)
)

end { Initialize-Population}

Figure 37. Modified Indexed Initialize Population Process
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Nodes 0 1 2 3 4 5 6 7 Variation
1 32480 t
2 16240 16240 - - 0%
4 8120 8120 8120 8120 - - - 0%
8 4060 4060 4060 4060 4060 4060 4060 4060 0%

Table 24. Interleaved/Block Distribution Strategy Allocations

is greater than half of the string length, this strategy approaches the indexed strategy.

Dymek also rejects this strategy because of anticipated poor load balancing(14).

The third strategy imposes an ordering on the building blocks, then interleaves the

building blocks across the processors based upon their position in the ordering. It is

called the "interleaved" distribution strategy. The UNITY description for this strategy is

presented at Figure 38. Dymek selected this strategy because it achieves "almost perfect"

load balancing based strictly upon the number of building blocks assigned to each processor.

Using this strategy on m processors, each processor j, 0 < j < m, is allocated

Nj = (14)
m

solutions. Thus, this strategy allocates solutions to processors for the example problem

as shown in Table 24. This strategy allocates solutions as evenly as possible. Processors

receive differing numbers of solutions only in cases where the number solutions in the

initial population is not evenly divisible by the number of processors. In such cases,

subpopulation sizes differ by 1 solution. This is the strategy which is used in Dymek's

parallel MGA implementation.

The last strategy, which Dymek does not discuss, assigns the building blocks to the

processors using a block distribution strategy. It is called the "block" distribution strategy.

The UNITY description for this strategy is presented at Figure 39. This strategy allocates

the same number of solutions to each processor as the interleaved strategy.
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Function Initialize-Popu~lation
declare

lock :boolean
loci array [0..k] of integer

initially
lock = FALSE
popindex = 0
(V i: 0 < i< k:: loci~s] = k - i- 1
(V i: 0 < i < POP..SJZE.: distrib utionfs]ij

always
I = [(l-)m W -1 1
(V j: 0•1< in< :: S UBJ' OPSIZEIbj

assign

(IV: < j< k:
pop(O]-[popindex].allelefj3,
pop[0I(popindex].locibl :
bieilding..block[i mod Ckj.ellelebl,

U(diatribution[atebpopindexfi mod Ck]], sttbpopindex~i mod Ck], lock,
aaubpopindex~i mod C"], aiebpopindexfi mod C"] + 1, TRUE)

if (popindex mod Ck 0 0) V (lock =FALSE)

locibl, lock :

locil)1 + 1, FALSE
if (Vn: 1< n <j:: loctln]I= locln - 1] - I

A loc46]' = I - I
A loci~i] < lociU - 1] - 1
A(popindex mod Ck = 0)
A(lock = TRUE)

0, FALSE
if (Vn: 1 < n < loci~nJ= lociln -1)J-1)

A(popindex mod Ck = 0)
A(lock = TRUE)
A locilo] = I - 1

end {Initialize-Population)

Figure 38. Interleaved Initialize Population Process
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Function Initialize-Population
declare

lock boolean
loci array [o..k] of integer

initially
lock FALSE
popindex = 0
(V i: 0< i < k:: loci[i] = k- i- - )
(V i: 0 < i < POP.SIZE:: distribution[i] i)

always
I (l - j/ml - 1
(V j: 0 < j < m:: SUB.POP.SIZEDJ =

assign
(OV i:O0< i< k :

(

(11V3: 0<j< k::
pop[O][popindez]. allelel],
pop[O][popindex].toci] :=
building-block[i mod Ck].allele[D.,
locilj'

)
( distribution(subpopindex [Lim/POP-SIZEJ], asbPopindex[ Lim/ POPSIZEJ], lock,

sabvopindezx[Lim/POPSIZEJ], subpopindex[Lim/POPSIZEJ] + 1, TRUE)
) if (popindex mod Ck 0 0) v (lock = FALSE)

lllVJ:0< j < k::

lociDL, lock :=
lociD1 + 1, FALSE
if (Vn: I < n <:: locthn] = lociln - 1] - 1)

"A locO] = I - 1
"A loci[D] < bociTj- 1] - 1
A(popindez mod Ck = 0)
A(lock = TRUE)

0, FALSE
if (Vn: 1 < n < j:: lociln] = loculn - 1]- 1)

A(popindex mod Ck = 0)
A(lock = TRUE)
A loci[O] = I - 1

)
)

end {InitializePopulation}

Figure 39. Block Initialize Population Process
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An illustration contrasting the distributions resulting from the application of the four

strategies to a problem with a string length of 10 on a 4-processor architecture is shown

at Tables 25 and 26.

Dymek's selection of the interleaved distribution strategy is apparently based upon an

unstated assumption that the execution time of a given processor in the primordial phase

is a function only of the number of solutions allocated to the processor. This assumption

ignores the details involved in the selection of the second mate for each tournament. As

shown in Figures 18 and 35, the selection of the second mate involves a loop, in which

strings are randomly selected until either one is found which is "compatible" with the first

mate or the shuffle size has been exceeded. As discussed in Section 3.1, the shuffle size

is an input parameter specified at run time. Thus, the execution time of the primordial

phase on a given processor is a function of

"* the number of solutions allocated to the processor's subpopulation,

"* the probability with which two solutions randomly selected from a particular sub-

population are compatible, and

"* the shuffle size.

The data distribution strategy affects both the number of solutions allocated to each

subpopulation and the probability of compatibility. The effect on compatibility is complex,

but Tables 25 and 26 give some indication of the four strategies behaviors with respect to

compatibility. It is apparent that the indexed, modified indexed, and block strategies tend

to allocate compatible solutions to the same processor, while the interleaved distribution

does not.

5.2 Experimental Design.

In order to determine the effects of each of the data distribution strategies on solu-

tion quality and execution time, a series of experiments are performed. Versions of the

parallel messy genetic algorithm(14) which use modified data distribution strategies are

implemented on an 8-node iPSC/2 in C (Green Hill's C-386 compiler Version 1.8.4) under

the UNIX System V/386 Release 3.2 operating system.
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Node
Indexed Modified Indexed Block Interleaved Defining Loci

0 0 0 0 123
1 124
2 125
3 126
0 127
1 128
2 129
3 1210
0 134
1 135
2 136
3 137
0 138
1 139
2 1310
3 145
0 146
1 147
2 148
3 149
0 14 10
1 156
2 157
3 158
0 159
1 1510
2 167
3 168
0 169
1 1610

1 2 1 78

3 179
0 1710
1 189
2 1810
3 1910
0 234
1 235
2 236
3 237
0 238
1 239
2 2310
3 245
0 246
1 247
2 248
3 249
0 2410
1 256
2 257
3 258
0 259
1 25 10
2 267
3 268
0 269
1 2610
2 278
3 289

2 0 2 7T10
1 289
2 2810
3 2910

Table 25. Distribution Strategies
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Node
Indexed Modified Indexed Block Interleaved Defining Loci

2 2 2 0 345
1 346
2 347
3 348
0 349
1 3410
2 3.56
3 357
0 358
1 359
2 3510
3 367
0 368
1 369
2 3610
3 378
0 379
1 3710
2 389
3 3810
0 3910

3 3 2 1 456
2 457
3 458
0 459
1 45 10

3 468
a 4a9
1 4610
2 478
3 479
0 4710
1 489
2 4810
3 4910

0 3 0 567
1 568
2 569
3 5610
0 578
1 579
2 5710
3 589
0 58 10
1 5910

2 2 678
3 679
0 6710
1 689
2 6810
3 6910

23 0 789
1 7810
2 7910

3 0 3 3 8910

Table 26. Distribution Strategies (cont.)
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Parameter Value
String Length 30
Block Size (I - String-Length) 3
Genic Alphabet 01
Reduction Rate (0 - 1.0) 0.5
Reduction Interval 2
Total Reductions 4
Shuffle Number (>I) 30
Cut Probability 0.0166667
Splice Probability 1.0
Total-Generations 19
Overflow (> 1.0) 1.6
Selection method (T/P) T

Table 27. Fully Deceptive Function Parallel MGA Input Parameters

For each strategy, the problem solved is the fully deceptive binary function optimiza-

tion problem described in Section 4.2. The deceptive function is selected as the target

problem in order to determine whether or not any of the distribution strategies affect the

parallel MGA's ability to solve such problems. Additional test problems, such as the com-

binatoric and functional optimization problems discussed in Sections 4.3 and 4.4 are not

addressed, although such experiments are recommended.

The 8-node iPSC/2 allocates processors in sets of 1, 2, 4, or 8. Each MGA imple-

mentation is executed 10 times for each of the four possible hypercube dimensions, using

the first 10 random number seeds generated in the experiments described in Section 4.2.

The number of experiments is s.lected to be large enough to give a reasonable chance of

obtaining results which are statistically significant at the 1% level.

The parameters used in the executions are shown at Table 27. They are the same pa-

rameters used for the original MGA implementation experiments described in Section 4.2.

5.3 Results.

The average solution quality obtained using each of the four distribution strategies

for each hypercube dimension is shown at Table 28. Kruskal-WaMlis Tests at the 5% level of

significance for each hypercube dimension are shown at Table 29. The tests indicate that
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Solution Quality
Distribution Strategy Processors Mean Standard Deviation

Indexed 1 297.8 1.751
2 298.2 1.135
4 297.6 1.265
8 296.6 1.647

Modified Indexed 1 297.8 1.751
2 297.0 2.160
4 298.0 1.333
8 296.8 1.932

Interleaved 1 297.2 2.150
2 298.0 1.633
4 298.2 1.989
8 297.8 1.751

Block 1 297.2 2.150
2 298.0 1.886
4 298.2 1.751
8 297.8 1.476

Table 28. Parallel MGA Solution Quality Results

Proessrs kX-1,0.05• H value Reject H0?

1 4 7.8147 0.749268 No
2 4 7.8147 1.935000 No
4 4 7.8147 1.233659 No
8 4 7.8147 3.411585 No

Table 29. Parallel MGA Solution Quality Kruskal-Wallis Tests

choice of distribution strategy does not have a statistically significant effect on solution

quality for the fully deceptive binary function using small hypercube dimensions.

The execution times and speedups for each significant operation are given in Ap-

pendix B for each version of the parallel MGA. As expected, the execution times for the

generation of the competitive template and the creation of the building blocks are very

similar for all of the distribution strategies and all hypercube dimensions. Kruskal Wallis

Tests confirm that neither choice of distribution strategy nor hypercube dimension sig-

nificantly affects execution time spent in these operations. The H values of the tests are

8.612818 and 5.291925 respectively, which are both less than =0 = 24.996.
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Distribution

Strategies k H value Reject H0 ?

1, 2 2 7.8794 14.285714 Yes
1, 3 2 7.8794 14.285714 Yes
1, 4 2 7.8794 14.285714 Yes
2, 3 2 7.8794 14.285714 Yes
2, 4 2 7.8794 14.285714 Yes
3, 4 2 7.8794 12.091429 Yes

Table 30. Initialization Time Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 = Block

Distribution
Strategies k X• 2...nO5 H value Reject H 0 ?
1, 2 2 7.8794 14.285714 Yes
1, 3 2 7.8794 14.285714 Yes
1, 4 2 7.8794 14.285714 Yes
2, 3 2 7.8794 14.285714 Yes
2, 4 2 7.8794 14.285714 Yes
3, 4 2 7.8794 14.285714 Yes

Table 31. Primordial Phase Execution Time Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 = Block

Both distribution strategy and hypercube dimension significantly affect the execution

times of the population initialization, the primordial phase, and the data structure con-

version operations. The results of Kruskal-Wallis Tests comparing the data for execution

times using 8 processors are summarized in Tables 30 through 34. The results indicate

statistical evidence at the 0.5% level of significance that the choice of distribution strategy

affects the execution time spent in these operations. Tests at the 5% level of significance

do not indicate that distribution strategy affects juxtapositional phase or overall execution

time.

Hypercube dimension also significantly affects the execution times of the population

initialization, the primordial phase, and the data structure conversion operations. Average

speedups are shown for each implementation for the primordial phase alone (Figure 40),

the three distribution strategy dependent operations together (Figure 41), and the overall

execution (Figure 42). Kruskal-Wallis Tests are performed comparing speedups for the
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Distribution
Strategies k 2H value Reject H0?Xk--l.0.O05 HvleRjc

1, 2 2 7.8794 14.285714 Yes
1, 3 2 7.8794 14.285714 Yes
1, 4 2 7.8794 14.285714 Yes
2, 3 2 7.8794 14.285714 Yes
2, 4 2 7.8794 14.285714 Yes
3, 4 2 7.8794 14.285714 Yes

Table 32. Data Structure Conver, ion Time Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 = Block

Distribution
Strategies k 1. H value Reject H0 ?Strategies k -lk1O.05

1, 2 2 3.8415 0.365714 No
1, 3 2 3.8415 2.520000 No
1, 4 2 3.8415 0.142857 No
2, 3 2 3.8415 3.291429 No
2, 4 2 3.8415 1.651429 No
3, 4 2 3.8415 0.462857 No
All 4 7.8147 4.251220 No

Table 33. Juxtapositional Phase Execution Time Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 = Block

Distribution
Strategies k -0.05 H value Reject H0 ?

1, 2 2 3.8415 0.022857 No
1, 3 2 3.8415 0.012857 No
1, 4 2 3.8415 1.285714 No
2, 3 2 3.8415 0.005714 No
2, 4 2 3.8415 0.822857 No
3, 4 2 3.8415 0.822857 No
All 4 7.8147 1.519390 No

Table 34. Total Execution Time Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 - Block
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DistributionStrategies k v

1,2 2 7.8794 14.285714 Yes
1, 3 2 7.8794 14.285714 Yes
1, 4 2 7.8794 14.285714 Yes
2, 3 2 7.8794 14.285714 Yes
2, 4 2 7.8794 14.285714 Yes
3,P4 2 7.8794 14.285714 Yes

Table 35. Primordial Phase Speedup Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 Black

primordial phase alone (Table 35), the three distribution strategy dependent operations

together (Table 35), and the overall execution (Table 35) using 8 processors. The results

indicate statistical evidence at the 0.5% level of significance that the choice of distribution

strategy affects the speedup in the the execution of the primordial phase, and the conversion

of the data structures for the juxtapositional phase. Thus, the modified indexed strategy

yields the best speedup of the primordial phase and the parallelized portion. The block

strategy results in the next best speedup. As discussed previously, the modified indexed

strategy is expected to exhibit significantly worse speedup for implementations for which

the number of processors exceeds one half of the string length. Thus, the block strategy is

expected to give the best primordial phase speedup in such implementations.
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Distribution

Strategies k H value Reject Ho?

1, 2 2 7.8794 14.285714 Yes
1, 3 2 7.8794 14.28571-i Yes
1, 4 2 7.8794 14.285714 Yes
2, 3 2 7.8794 14.285714 Yes
2, 4 2 7.8794 14.285714 Yes
3, 4 2 7.8794 14.285714 Yes

Table 36. Parallelized Operations Speedup Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 = Block

Distribution
Strategies Xk-0.0 H value Reject Ho?
1, 2 2 3.8415 0.005714 No
1, 3 2 3.8415 0.280000 No
1, 4 2 3.8415 2.520000 No
2, 3 2 3.8415 0.142857 No
2, 4 2 3.8415 2.285714 No
3, 4 2 3.8415 0.965714 No
All 4 7.8147 3.162439 No

Table 37. Overall Speedup Kruskal-Wallis Tests

Distribution Strategy Legend: 1 = Indexed, 2 = Modified Indexed, 3 = Interleaved, 4 = Block
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Tests at the 5% level of significance do not indicate that the distribution strategy

affects juxtapositional phase or overall execution speedup. The shape of the overall speedup

curves does suggest that the block strategy may provide significantly better speedup for

implementations using more processors.

The variations in initialization phase execution times are attributable to load im-

balance. Both the indexed and modified indexed strategies require some processors to

initialize more solutions that other processors. The small difference between the inter-

leaving strategy initialization and block strategy initialization, both of which have nearly

perfect load balancing, is due to the simplicity of the block strategy.

The variations in the primordial phase execution times are also attributable to load

imbalance, although the load imbalance is not caused entirely by the number of solutions

assigned to each processor. The degree of compatibility among solutions assigned to the

processor also contributes significantly to execution time in the primordial phase. Where

the degree of compatibility is high, as with the indexed, modified indexed, and block

strategies, the second mate for each tournament is found relatively quickly. Conversely,

where the degree of compatibility is low, as with the interleaved strategy, additional time is

required to find a compatible mate. The overall effect is that the interleaved strategy results

in significantly higher execution time in the primordial phase than the other strategies.

The indexed, modified indexed, and block distribution strategies all result in "super-

linear speedup" of the primordial phase. The modified indexed and block distribution

strategies also result in "super-linear speedup" of the initialization, primordial phase, and

conversion operations together. The presence of "super-linear speedup" is misleading in

that the parallel algorithm is not completely functionally equivalent to the sequential

algorithm. The modifications introduced in the parallelization account for part of the

speedup. Application of the same modifications to the sequential algorithm should result

in reduced execution time.

97



5.4 Summary.

The execution time of the MGA is dominated by the primordial phase, indicating

that significant speedup requires parallelization of the tournament selection algorithm. The

algorithm is inherently sequential due to the property that any tournament may involve any

member of the population. Paxallel algorithms exist which approximate the behavior of the

sequential tournament selection algorithm. The initial population may be distributed in a

number of ways, including the "indexed," "modified indexed," "interleaved," and "block"

distribution strategies. The indexed and modified indexed strategies allocate solutions to

processors based upon the solution's first defined locus, resulting in uneven distribution.

The interleaved and block distribution strategies result in even distributions.

Primordial phase execution time is a function of the number of solutions in the

subpopulation, the probablity that two randomly selected solutions are compatible, and the

shuffle size. The distribution strategy affects the number of solutions in the subpopulation

and the probability that two solutions are compatible. Experiments comparing the solution

quality and execution time of the four distribution strategies when applied to the fully

deceptive binary function show that the distribution strategy does not have a significant

effect on solution quality. Results indicate that the distribution strategy does have a

significant effect on primordial phase execution time. The indexed, modified indexed,

and block distribution strategies result in "super-linear speedup" in the primordial phase,

indicating that the sequential algorithm can be made more efficient by partitioning the

population.
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VL Communication in Parallel Genetic Algorithms.

One of the objectives of this thesis is to investigate methods of implementing simple

genetic algorithms on parallel architectures. As discussed in Section 2.8, reported parallel

implementations of genetic algorithms have exploited the high degree of data parallelism

present in genetic algorithms by partitioning the population among the processors(8, 7, 45,

30, 46). Partitioning the population requires design decisions regarding the impDlementation

of the selection and crossover operators.

Selection may be performed locally or globally. Local selection treats each subpop-

ulation independently. Independent selection eliminates the communication overhead and

synchronization requirements associated with global selection. On the other hand, local

selection introduces selection bias, which can be avoided in global selection. Section 6.1

examines local selection, sequential global selection, and parallel global selection in the con-

text of Baker's metrics and other considerations specific to parallel implementations(3, 14).

Likewise, crossover may be performed either locally or globally. Global crossover

allows subpopulations to benefit from information gained from the search processes con-

ducted by other subpopulations, but only at the expense of unacceptable communication

overhead. As an approximation to global crossover, subpopulations may "share" highly

fit solutions with other subpopulations. Like global crossover, "solution sharing" allows

subpopulations to benefit from information obtained in other subpopulations' search pro-

cesses. In contrast to global crossover, solution sharing incurs only modest communication

overhead. However, solution sharing artificially increases the number of copies of each

communicated solution, and as such may lead to premature convergence. Premature con-

vergence in genetic algorithms occurs when populations become dominated by similar

strings representing locally optimal solutions early in the search process(15).

This chapter presents three solution sharing strategies (Section 6.2), including a non-

sharing strategy, an unconditional sharing strategy(14), and a conditional strategy(35).

The non-sharing strategy performs no solution sharing. The unconditional sharing strat-

egy communicates solutions regardless of whether or not they have previously communi-

cated. The conditional sharing strategy only communicates solutions which are better than
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previously communicated solutions. The remainder of the chapter describes experiments

comparing the effects on premature convergence of each of the selection and solution shar-

ing strategies (Section 6.3) and presents the results of the experiments (Section 6.4). These

experiments extend Dymek's work(14) by examining the unconditional sharing strategy in

conjunction with the parallel global selection strategy, and by adding the conditional shar-

ing strategy experiments. The results of the experiments are presented in Section 6.4.

6.1 Selection Strategies

Baker identifies three metrics by which to compare selection algorithms which are

oriented towards maintaining the validity of the Schema Theorem and reducing execution

time(3). Following Baker, let f(i) be the actual number of copies allocated to individual

i and ev(i) the expected number of copies assuming perfect sampling. "Perfect sampling"

is defined such that

ev(i) N (15)ei)-Ej, =I Aj'

where pi is the fitness of individual i and N is the population size. An individual's "bias,"

which was first studied by Brindle(5), is the absolute value of the difference between its

"actual" sampling probability and its expected sampling probability. Assuming that the

"actual" sampling probability is well approximated by the mean sampling rate f(i)/N,

observed over some large number of independent executions of the selection algorithm,

and noting that the expected sampling probability is ev(i)/N, the bias of individual i is

given by

B(i)= 7-)-ev(i)
N (16)

"Zero bias" is present when the mean number of copies allocated to an individual is equal to

the expected number of copies. "Spread" is the range of possible values for f(i). "Minimum

Spread" is the smallest spread which theoretically permits zero bias, implying that

f(i) E { [ev(i)J, [ev(i)1}. (17)
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Baker's third metric, efficiency, is the time complexity of the selection algorithm. Bias,

spread, and efficiency provide a useful and complete framework for the evaluation of se-

quential selection algorithms and a starting point for the evaluation of parallel selection

algorithms.

Parallel selection algorithms may exhibit bias and spread with respect to either the

local or global population. Local and global bias are given by Equation 16 where ev(i) is

calculated based upon the mean fitness of the local population or the global population

respectively. Likewise, local and global spread are both given by Equation 17, with ap-

propriate values for ev(i). In order to ensure the applicability of the Schema Theorem,

a parallel selection algorithm must exhibit zero global bias and minimum global spread.

Additional issues concerning parallel selection algorithms include load balancing, synchro-

nization requirements, and communication requirements.

As discussed in Section 2.3, the most common implementation of selection is stochas-

tic sampling with replacement (SSR). SSR has zero bias, but also has unlimited spread

and an algorithmic time complexity of O(N 2 ), where N is the population size'. Baker pro-

poses a selection algorithm, shown at Figure 43, called "Stochastic Universal Sampling"

(SUS) which is bias-free, has minimum spread, and has an algorithmic time complexity

of O(N)(3:16-17,19). The remainder of this section presents three parallel selection al-

gorithms, each of which is based on SUS. Each algorithm is discussed in the context of

Baker's metrics and the above parallel performance measures. All three strategies begin

by evenly distributing N/m solutions to each of the m processors.

The first strategy, local selection, performs SUS for each subpopulation indepen-

dently. Local selection allocates copies to solutions based upon their fitness relative to the

average fitness of solutions in the same subpopulation. Thus, it allocates

IN (18)
M 2.,k=1 t

1O(NiogN) using a B-tree.
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1. Compute total'fitness

2. ptr - Raud()

3. sum 0, i 0, k - O

4. while i < N

(a) expected - fitness[i] xN I total'fitness

(b) sum - sum + expected

(c) while ptr < sum

i. sample[k] - t

ii. k - k + 1

iii. ptr - ptr + 1

(d) i - i + 1

Figure 43. Baker's Stochastic Universal Sampling (SUS) Algorithm

1. Compute total'fitness

2. ptr - Rand()

3. sum O0, i -0, k -0

4. while i < N/m

(a) expected - fitnessfi] x(N/m) total'fitness

(b) sum - sum + expected

(c) while ptr < sum

i. sample[k] - i

ii. k - k + I

iii. ptr - ptr + 1

(d) i - i + 1

Figure 44. Local Selection Algorithm

copies to each solution in the ith subpopulation. Substitution into Equation 16 and using

the global average fitness to calculate ev(i) shows that local selection results in global bias

B(i) i AN/ri
k .,=l Pkt -- k---- PA

1 1 (19)

towards individuals allocated to subpopulations for which the average fitness is below the

overall population average fitness.

Local selection does not vary the local population sizes, and each subpopulation

contains N/m solutions (Figure 44). The value of the sum variable at the completion of

the algorithm is equal to the total of the values taken on by the expected variable over
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the N/m iterations of the outer loop:

N/m N/m N

Some iterations of the outer loop result in multiple executions of the inner loop, while

others do not result in any. Every execution of the inner loop increments the ptr variable.

At the completion of the algorithm,

ptr = [sumil = [NJ.

Therefore, the total number of times which the inner loop executes is [•1, so that lo-

cal selection is of O(N/m) algorithmic time complexity on each processor. Because each

processor simultaneously executes exactly the same number of operations, the overall com-

plexity is also O(N/m) and local selection exhibits perfect load balancing. Local selection

has no synchronization or communication requirements.

The second strategy, sequential global selection (or simply "global selection") per-

forms SUS on the entire population. The SUS algorithm is modified (Figure 45) to include

communication between processors during the global fitness calculation and after each

subpopulation is selected. Global selection results in zero global bias, minimum global

spread, and low communication time. Because global selection has zero bias, the number

of copies each solution receives is given by Equation 15. The total number of solutions in

subpopulation i in generation t + 1 is then given by

N,(t) pj N
N,(t-+ 1) = Z N

j=1 Zk=1 Ak

= N • (20)•k=1 Ak

which predicts that a subpopulation's size in the next generation is proportional to its

contribution to the total fitness in the current generation. Thus, better solutions lead to

larger subpopulations.
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Goldberg presents theoretical and experimental arguments for the existence of opti-

mal population sizes for both serial and parallel implementations of genetic algorithms(22).

The optimal size depends upon a number of factors, including string length, cardinality,

and degree of parallelization. For population sizes below the optimal, insufficient schemata

are represented and the genetic algorithm tends to converge prematurely. Population sizes

above the optimal increase execution time without significantly increasing the number of

schemata represented. Because better solutions in sequential global selection lead to larger

subpopulations, it is reasonable to expect that load balancing becomes an issue when the

subpopulation sizes are below the optimal.

Applying reasoning similar to that used in the analysis of the local selection algo-

rithm, at the completion of the sequential global selection algorithm,

global-sum = [N] = N.

Thus, the inner loop of Figure 45 is executed a total of N times by all the processors. Each

processor i executes the loop Ni(t) times. Due to the synchronization requirement following

the selection of each subpopulation and prior to the selection of the next subpopulation,

the executions of the inner loop do not overlap. Thus, the global selection algorithm has

O(N) time complexity.

The third strategy, parallel global selection, which is due to Dymek, relaxes the re-

quirement for perfect adherence to theoretical selection rates(14). The global selection

algorithm is modified to eliminate the communication step following subpopulation selec-

tions, and therefore the associated synchronization requirement. The parallel global selec-

tion algorithm is shown at Figure 46. Using the roulette wheel analogy, if Baker's original

algorithm is like spinning one large wheel, the parallel version is similar to spinning one

smaller wheel on each processor (See Figure 47). It results in zero bias, minimum spread,

and low communication time. Again, the inner loop of Figure 46 is executed a total of N

times, where each processor i executes it Ni(t) times. As is the case with the local selection

algorithm, execution on separate processors overlaps, so that the total execution time is

determined by the largest subpopulation size. Thus, the parallel global selection algorithm
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1. Compute total'fitness and global'total'fitness

2. if mynode() = 0 then globadl'ptr .- Rand() else crecv(global'ptr)

3. Vi: 0 < i < N :: global'sample~i] -1,

4. if mynode() = 0 then global'sum - 0 else crecv(global'sum)

5. expected'sum - 0, i- Y"s.od.()-1 N.(t), m - 0

6. while i < N,(t)

(a) global'expected - fitnes.(i] xN I global'total'fitness

(b) expected'sum - expected'sum + global'expected

(c) globa'sum - global'sum + global'expected

(d) while global'ptr < global'sum

i. global'sample[m] - i

ii. m -m+l

iii. global'ptr - globalptr + I

(e) i - il + 1

7. if mynode() i numnodes() - I c.end(global'ptr), csend(global'sum)

8. Determine new local population size

Figure 45. Global Selection Algorithm

is of O(A) algorithmic time complexity where A is the largest subpopulation size(14). The

computation of the global total fitness and global population size require synchronization

of the processors prior to each application of the selection operator. As with sequential

global selection, load balancing is likely to become an issue when subpopulation sizes are

below the optimal.

6.2 Solution Sharing Strategies

While global selection is a reasonable option, global crossover is not. A parallel

genetic algorithm implemented on m processors using global crossover with a probability

of crossover p,, would on average communicate a fraction pc(m - 1)/m of the solutions

in the population every generation. Using conservative values of Pc = .6 and m = 8,

global crossover would require communicating an average of 53% of the solutions every

generation. Increased probabilities of crossover or numbers of processors result in even

higher communication requirements. Current parallel architectures are such that inter-

processor communication is substantially slower than computation. Were this not the

case, global crossover would be a viable option.
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I. Compute totalfitness and global'total'fitness

2. pir - Rand()

3. V i: 0 < i < N :: global'sample~i] - -1,

4. sum = 0, i ZMr.-•- -l N.(t), m - 0
E',ynod*(0 Ni,()

5. while i i= v.. e),(0

(a) global'expected - fitnessli] xN / global'total'fitness

(b) sum - sum + global'expected

(c) while ptr < sum

i. global'sample[m] - i

ii. m - m + i

iii. ptr - ptr + 1

(d) i i +

6. Determine new local population size and new global population size N

Figure 46. Parallel Global Selection Algorithm

7 ....... ........... . . ..

Node 0 0.25 spins

SubpopulationA ,•

A

Node I 0.75N spins

Baker's Sequenb Algorithm Parallel Version

Figure 47. Parallelizing Baker's Algorithm
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Whether a parallel genetic algorithm implementation uses local, global, or parallel

global selection, it is not functionally equivalent to a sequential implementation, if crossover

is performed locally. The absence of global crossover reduces the efficiency of schema pro-

cessing within the genetic algorithm, because new solutions are formed only from portions

of solutions present in the same subpopulation.

Kommu presents expressions for trial allocation in parallel genetic algorithms with

and without communication for a two armed bandit problem(36). A solution to a k-armed

bandit problem attempts to maximize the total payoff obtained in sequential selections

from k > 2 arms, each of which has an unknown payoff distribution. Kommu's expression

for trial allocation to a schema ( in generation t + 1 in a genetic algorithm implemented

on P processors with no communication predicts

m ( (,t+ /1) _ [J ',
1_,J•J' rl

P(t)Z E I.. (21)

where fi is the combined fitness of the samples allocated to • in the ith subpopulation

in iteration t, f•, is the number allocated to the other schema (', and p(t) is the size of

each subpopulation, which is assumed to be constant. The equivalent expression for trial

allocation in a parallel genetic algorithm with communication predicts2

M((¢,t + 1) =
,=• fi+ ' I_,= ,

rPx P(t) I

= PP(t) i= T1;f (22)

The latter actually predicts the trial allocation assuming perfect communication, i.e. global

crossover(34). Solution sharing approximates the effects of global crossover by communi-

cating the best solution(s) present in a subpopulation to other subpopulations. In order

2The limits of summation in the denominator have been changed to correct a presumed typographical
error. The limits as published in Proceedings of the 1992 International Conference on Parallel Processing
ranged from i to P for both summations.
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to predict the effect of solution sharing on trial allocation, it is convenient to assume that

the communication of a single solution containing the schema C results in an increase in f'

f.= m((,t)+ 1 (23)
m((,t) f(

and a corresponding decrease in f•,

fI =m(C',t)- 1m(C', t) 1 (24)

so that the trial allocation in the next generation may be approximated as

C+ Pp(t) r ( t) + 1), 1 (2

L(m(C,,t)± 1) Zpl f, + (m(, t) - 1)

Assuming that m((, t) ; m(C', t) in early generations, and observing that in large popu-

lations m((,t) > 1, Equation 25 reduces to Equation 22, so that the approximation tW

global crossover is good. In very small populations, on the other hand, m((, t) ; 1, so that

the contribution of C' approaches zero, and Equation 25 predicts rapid convergence.

Solution sharing thus allows receiving subpopulations to benefit from information

obtained in the search processes conducted by transmitting subpopulations. On the other

hand, sharing creates a disproportionate number of copies of the communicated solutions

in the global population, which may lead to premature convergence, especially in small

populations. The remainder of this section presents three solution sharing strategies with

varying degrees of communication overhead and anticipated effects on premature conver-

gence, which are compared experimentally in Section 6.3.

The first solution sharing strategy, "No sharing," performs no solution sharing. The

no sharing strategy does not result in disproportionate copies of solutions, nor does it re-

quire communication overhead. It also does not allow subpopulations to share information,
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thereby reducing the efficiency of schema processing. Trial allocation for this strategy is

predicted by Equation 21, so that premature convergence is not anticipated.

The second strategy, "Sharing," periodically broadcasts a single solution from each

subpopulation. Other implementations of parallel genetic algorithms have used periodic

communication(58). The number of generations in between communication is referred to

as the epoch size. This study uses an epoch size of 5 generations. Received solutions replace

less fit solutions in the receiving population. This strategy allows subpopulations to share

information, but allocates extra copies to the communicated solutions and involves a small

amount of communication overhead. Trial allocation for this strategy is approximated by

Equation 25, so that premature convergence in small populations is anticipated.

The third strategy, "Conditional sharing," is identical to the second, except that

solutions are communicated only when they represent an improvement over the previous

solution communicated by that node(35). This strategy allows subpopulations to share

the most valuable information, while minimizing the extra copies allocated due to shar-

ing. The implementation of conditional sharing used in this study involves even greater

communication overhead than the "Sharing" strategy, although in a more efficient imple-

mentation this would not be the case. Trial allocation for this strategy is approximated

by Equation 25 for generations in which solutions are communicated, and by Equation 21

for generations in which no solvt-3ns are communicated. Because convergence itself tends

to reduce the rate at which new solutions are explored, this strategy decreases the rate of

solution sharing when the subpopulations begin to converge. The anticipated effect is an

overall improvement in solution quality relative to the first strategy, and a reduction in

the tendency towards premature convergence relative to the second strategy.

6.3 Premature Convergence Experiments.

As discussed in Section 4.4, Rosenbrock's Saddle is an established test of genetic

algorithm performance(13, 21, 45). It is also routinely used as a standard against which

to judge the performance of gradient-based search using the penalty function approach.

Dymek reports that the function belongs to a class of functions associated with control sys-
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tems used in air-to-air missile guidance, tracking, and oscillation control(14). Rosenbrock's

saddle is used as the test problem in this study because

"* premature convergence was observed using a hypercube implementation of a genetic

algorithm(45:156-158),

"* premature convergence could not be attributed to population size alone(45:156-158),

"* premature convergence was not alleviated using a strategy which prevents similar

solutions from mating(15:115-122),

"* the function is not GA-hard,

"* local selection is cited as a possible cause of premature convergence(45:156), and

"* previous work examining premature convergence in parallel genetic algorithms fo-

cused on Rosenbrock's saddle(14).

Each of the three selection strategies is tested in conjunction with each of the three

solution sharing strategies. For each combination, global population size is varied from

80 to 3200 to examine performance in both small and large populations. The number of

generations is fixed at 200. In order to reduce the effects of noise due to dependence on the

initial random number seed, the results for each test case are averaged over 40 executions

using different random seeds. The seeds are themselves randomly generated in such a

manner as to ensure that the initial populations of each execution may be assumed to be

independent(14). Identical random seeds are used across test cases to eliminate variance

due to dependence on the random number sequence. The encoding scheme and evaluation

function are the same as those described in Section 4.4.

6.4 Results.

This section presents the results of the communication strategy experiments. The

results are specific to the optimization of Rosenbrock's Saddle, and are not necessarily

valid for other problems. None of the data are tested for statistical significance, so that

the results should be interpreted only as trends.
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Two Letter Designator Selection Strategy Sharing Strategy

LN (L)ocal (N)onsharing
LS (L)ocal Unconditional (S)haring
LC (L)ocal (C)onditional Sharing
GN Sequential (G)lobal (N)onsharing
GS Sequential (G)lobal Unconditional (S)haxing
GC Sequential (G)lobal (C)onditional Sharing
PN (P)arallel Global (N)onsharing
PS (P)arallel Global Unconditional (S)haring
PC (P)arallel Global (C)onditional Sharing

Table 38. Two Letter Designators for Communication Strategies

Each combination of selection strategy and sharing strategy is given a two letter des-

ignator, selected to maintain consistency with Dymek's designators, as shown in Table 38.

Population sizes are divided into two groups. "Small" population sizes are those less than

or equal to 320, while those greater than 320 are "large." The "effectiveness statistic" E

of a strategy, which gives a rough indication of the effectiveness of the search process in

the last half of each execution, is arbitrarily defined as

E = F(100) - F(200)
F(100) ' (26)

where F(t) is the best fitness of any solution in generation t for the strategy in question.

An effectiveness statistic near 0 indicates premature convergence, while an effectiveness

statistic near 1 indicates continued effective search. The effectiveness statistics of each of

the strategies for each population size is shown in Appendix C. The mean effectiveness

statistics for each strategy taken over all small populations and over all large populations

are shown at Tables 39 and 40, respectively. As expected, the data indicate that small pop-

ulations are more prone to premature convergence than large populations. In particular,

unconditional solution sharing in small populations contributes to premature convergence.

Strategies using conditional solution sharing are slightly less susceptible than those using

no shariiag. Global selection in small populations appears to contribute to premature con-

vergence, and parallel global selection appears to contribute more than sequential global
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Effectiveness Statistic
Selection Strategy Mean Standard Deviation

LN 0.256 0.135
LS 0.021 0.038
LC 0.372 0.160
GN 0.208 0.180
GS 0.055 0.087
GC 0.300 0.229
PN 0.177 0.174
PS 0.004 0.007
PC 0.189 0.121

Table 39. Effectiveness Statistics - Small Populations

Effectiveness Statistic
Selection Strategy Mean Standard Deviation

LN 0.787 0.054
LS 0.577 0.354
LC 0.779 0.066
GN 0.706 0.073
GS 0.535 0.273
GC 0.804 0.070
PN 0.514 0.107
PS 0.288 0.098
PC 0.599 0.073

Table 40. Effectiveness Statistics - Large Populations
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selection. Large populations are not immune to premature convergence. In particular un-

conditional sharing and parallel global selection both contribute to premature convergence.

Raw data displaying solution quality as a function of generation for each population

size and communication strategy is given in Volume II. Section C.1 of this thesis shows

execution time as a function of population size.

In small population sizes, solution sharing strategies appear to have a more significant

effect on solution quality than do selection strategies. As expected, conditional sharing

strategies consistently perform better than non-sharing strategies, which in turn perform

better than unconditional sharing strategies. This is consistent with the behavior predicted

by Equations 21 and 25. Parallel global selection tends toward lower solution quality than

both local selection and sequential global selection, due to the selection errors induced in

parallelizing the global selection algorithm.

In large population sizes, selection strategy has a significant effect on solution qual-

ity. Local selection strategies, which converge quickly on locally optimally solutions, obtain

better solutions than sequential global selection strategies overall, many of which do not

converge prior to the completion of the experiment. Sequential global selection strategies

may produce better solutions in longer experiments. One exception to local selection's

superiority is that LC and GC obtain nearly equal solution quality. Parallel selection

strategies do not perform as well as other strategies. In many cases, unconditional sharing

results in better overall solutions than either the non-sharing or the conditional sharing

strategy, although differences in convergence characteristics indicate that the latter strate-

gies might overtake the former in longer executions.

Execution times for each of the communication strategies are shown in Appendix C,

grouped into small and large population sizes.

In small population sizes, the correlation between execution time and population size

is weak for PN, and PC. The correlation is strong for all three local selection strategies,

and almost as strong for GN, GS, GC, and PS. Execution times for the local selection

strategies grow linearly with population size, but reflect the communication overhead in-

volved with the solution sharing strategies. In the smallest population sizes, GS (PS) has
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longer execution times than GN and GC (PN and PC). In larger "small" populations this

is not the case.

The correlation between execution time and population size is stronger in large pop-

ulations than in small populations. Local selection results in nearly identical execution

times for all sharing strategies, which grow linearly with population size. The execution

times for GN and GC are roughly 10% higher than those for GS. Also, the execution

times for PN and PC are roughly 10% higher than those for PS. Unconditional sharing

apparently maintains relatively even population sizes even when global selection is used.

Execution times for global selection strategies are less well behaved than those for local

selection strategies, but still grow roughly linearly with population size. The execution

times for parallel global selection are 30-40% higher than those for local selection, while

those for sequential global selection are 80-100% higher. The higher execution times can

be attributed to load imbalance.

6.5 Summary.

Baker's proposes bias, spread, and efficiency as metrics for comparison of genetic

algorithm selection algorithms and presents the Stochastic Universal Sampling (SUS) al-

gorithm. SUS exhibits zero bias, minimum spread, and is of O(N) time complexity. In

order to apply the bias and spread metrics meaningfully to parallel selection algorithms,

they must be defined with respect to the global population. Parallel selection involves

several other issues, including load balancing, synchronization requirements, and commu-

nication overhead.

Three parallel versions of the SUS algorithm are local SUS, sequential global SUS,

and parallel global SUS. Local SUS has the advantages of O(N/m) time complexity, per-

fect load balancing, and no synchronization or communication requirements. It has the

disadvantages of non-zero global bias and non-minimum spread. Sequential global SUS

has zero global bias and minimum global spread, but is of O(N) time complexity, results

in load imbalance, and requires synchronization and some communication. Parallel global

SUS approximates sequential global SUS while eliminating the synchronization require-
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ments. As a result, it has near zero global bias and near minimum spread, is of O(A) time

complexity, and results in load imbalance.

Solution sharing is an approximation to global crossover with greatly reduced com-

munication requirements. The solutions communicated are allocated more copies than

predicted by the Schema Theorem, potentially leading to premature convergence. Con-

ditional sharing reduces the tendency to premature convergence by only communicating

solutions which are better than previously communicated solutions.

Experiments comparing the effects on premature convergence of each of the selection

and solution sharing strategies for various population sizes are summarized in Section 6.4.
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VII. Conclusions.

7.1 Generalization of the Messy Genetic Algorithm.

The generalized messy genetic algorithm is demonstrated to be capable of consistently

finding near optimal solutions to the Traveling Salesman Problem. In some experiments, it

finds the globally optimal solution. This is the first application of a messy genetic algorithm

to a combinatoric optimization problem. The generalized MGA is shown experimentally

to perform better than AFIT's original MGA implementation(14), the GENESIS simple

genetic algorithm, and the permutation version of GENESIS(27).

The generalized version is also demonstrated to be able to consistently find near-

optimal solutions to an order-3 fully deceptive binary function optimization problem(14),

which is provably difficult for simple genetic algorithms. In many cases, the generalized

MGA finds the optimal solution. The generalized MGA is shown experimentally to perform

better than the GENESIS simple genetic algorithm(27), although AFIT's original MGA

implementation(14) obtains slightly better solutions.

Finally, the generalized MGA is demonstrated to be capable of consistently finding

near optimal solutions to DeJong function f2(13), also known as Rosenbrock's Saddle. The

generalized MGA is shown experimentally to perform better than AFIT's original MGA

implementation(14), but not as well as the GENESIS simple genetic algorithm(27).

7.2 Parallelization of the MGA Primordial Phase.

AFIT's hypercube MGA implementation(14), which interleaves the initial population

members among the processors, is compared to a block distribution strategy and two

other strategies. The "indexed" and "modified indexed" allocate population members to

processors based upon an index. A solution's index is the first string position in which

the solution is defined. The "indexed" strategy uses standard interleaving based on the

index, while the "modified indexed" reverses the order in which processors receive solutions

in all passes following the initial one. The "modified indexed" strategy achieves a more

even distribution of population members than the "indexed" strategy. Choice of initial
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population distribution strategy is not found to have a statistically significant effect on

solution quality.

Even though the interleaving strategy allocates the members of the initial population

to the processors as evenly as possible, it is found to require significantly higher execution

times for the primordial phase than the other distribution strategies. This appears to

be due to the extra time spent searching for compatible mates with which to perform

tournaments. The "modified indexed" strategy results in the lowest primordial phase

execution times.

Choice of distribution strategy also has a significant effect on the execution time

required to merge the subpopulations and convert the data structures prior to the juxta-

positional phase.

7.3 Communication in Parallel Genetic Algorithms.

A total of nine communication strategies are examined, representing all possible com-

binations of three selection strategies and three solution sharing strategies. An existing

theoretical model of trial allocation for the Stochastic Universal Sampling (SUS) selection

algorithm(3) is extended to predict the behavior of three parallel implementations. Like-

wise, an existing theoretical model of schema growth for solution sharing(36) is refined and

extended to predict the behavior of three solution sharing strategies.

Experiments comparing the solution quality, execution time, and convergence char-

acteristics of each of the nine communication strategies for 200 generations in an 8-node

iPSC/2 implementation solving DeJong function f2(13) lead to a number of observations.

In these experiments,

"* small populations are more prone to premature convergence than large populations,

"* unconditional solution sharing contributes significantly to premature convergence in

small populations,

"* conditional solution sharing reduces the tendency to premature convergence in small

populations,
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"• sequential global SUS leads to premature convergence in small populations,

"• parallel global SUS increases the tendency to premature convergence in small popu-

lations,

"• unconditional solution sharing and parallel global SUS both lead to premature con-

vergence ia large populations,

"• conditional solution sharing in small populations results in better overall solution

quality than no solution sharing or unconditional solution sharing,

"• local SUS in large populations results in better solution quality in generation 200,

"• parallel global SUS in small populations results in unpredictable execution times,

"• unconditional sharing in very small populations results in longer execution times,

"• unconditional solution sharing in moderate and large populations results in lower

execution times, except in conjunction with local SUS,

"• sequential global SUS in large populations results in execution times approximately

80 - 100% longer than local SUS, and

"• parallel global SUS in large populations results in execution times approximately 30

- 40% longer than local SUS

Overall, for large population sizes, local selection with unconditional sharing results

in the best solution quality in these experiments. Other strategies may produce better

solutions in longer experiments.



VIII. Recommendations.

8.1 Further Investigation of MGA Performance.

The generalized MGA does not perform as well as AFIT's original MGA on the

fully deceptive binary function optimization problem. Investigation of the rcasons for

the poorer performance may lead to a better understanding of the MGA's behavior and

improved performance. Also, the generalized MGA performs significantly better than the

permutation GA on the 12-city TSP. Experiments in which the string length is much

larger than the block size are necessary in order to determine whether or not the results

are extensible to larger problem sizes. Finally, the generalized messy genetic algorithm

does not perform as well as the simple genetic algorithm on DeJong function f2(13). This

may be attributable to nonuniform building block size(24). Incorporation of Goldberg's

recommendations for null bits with tie breaking might lead to improved understanding and

performance.

8.2 Reduction of the MGA Initialization Phase Memory Requirement.

The large memory requirement of the MGA's partially enumerative initialization

restricts the applicability of the MGA significantly. Tournament selection imposes an or-

dering on each set of solutions based upon their fitnesses. The number of copies allocated

to a solution depends only on its position in the ordering, not on its actual fitness. There-

fore, an initialization algorithm which determines the distribution of solutions in the initial

juxtapositional phase prior to the enumeration of the solutions is possible. The degree of

compatibility among solutions in the population must be considered. A C fragment for

an algorithm which computes an expected distribution is shown at Figure 48. The algo-

rithm assumes that no two solutions share the same fitness. The design of an algorithm

which does not depend on this assumption is critical to accurately modeling tournament

selection.
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size = 0;
for (i = 0; i < generations; i++)

winners[i] = 0;

for Qi = 0; size < pop.size[generations]; j++) {
mlj] = 1.0;
for (i = 0; i < generations; i+÷) {

tournaments =
(double) shuffle-size * (double) m[j)]

((double) pop-size[i + 1] / (double) pop.size[i]);

survival-rate =
(double) (pop-size[i] - winners[i]) / (double) pop-size[i];

me[j] = (double) tournaments * survival-rate;

extra = m[j] - (int) mEji;

winnersEi] += m[j] = (Rand() < extra) + (int) m[ji;
I

size += meji];
}

m[j - 11 -= (double) (size - pop-size~generations]);

Figure 48. Stochastic Remainder Multi-Generational Tournament Selection C Fragment
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8.3 Application of the MGA to Deceptive Ordering Problems.

As discussed in Section 2.6, Kargupta presents fully deceptive absolute ordering and

fully deceptive relative ordering problems(31). Application of the MGA to these problems

is important to a complete understanding of its capabilities with regard to combinatoric

optimization problems. AFIT's cui jent MGA implementations cannot be applied to these

problems due to memory constraints.

8.4 Application of the MGA to the Conformational Analysis Problem.

It is important to demonstrate the applicability of messy genetic algorithms to prob-

lems of practical interest to the Air Force. A specific problem for which preliminary work

is complete is the conformational analysis of polypeptides. The conformational analysis

problem is representative of a class of computationally difficult problems, and is also of

interest due to its importance in the design of materials with specific non-linear optical

properties. The 3-dimensional structure of a large molecule, which is referred to as its

conformation, is the primary influence on the electrical and mechanical properties of the

material(33). Predicting the conformation based solely on knowledge of the molecule's

covalent bonding is non-trivial at best, and in general is not possible. Knowledge of the

hydrogen bonding is usually necessary as well.

The polypeptide conformational analysis problem is often solved via minimization

of the energy function, which has been accomplished using many optimization techniques.

Genetic algorithms (GA) have been applied to the related problem of DNA conforma-

tional analysis by maximizing the correlation of J-coupling data obtained from X-ray

diffraction. The energy minimization, Monte Carlo simulation, and simulated annealing

techniques search for molecular conformations which minimize the energy function of the

molecule(39:298-308). The energy function is modeled empirically, and usually consists

of contributions due to bond stretch, bond angle deformation, hindered torsional angle

deformation, and non-bonded interactions, as shown previously in Equation 6.

An attractive application of the messy genetic algorithm is to the conformational

analysis of [Met]-Enkephalin, a polypeptide consisting of the five-residue sequence Tyr-
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Gly-Gly-Phe-Met, which was used by Nayeem, Vila, and Scheraga to compare simulated

annealing and Monte Carlo simulation(42). Several simplifying assumptions are in order

to reduce computational complexity:

a Rigid covalent geometry of the residues. Taking the dihedral angles 0, O,w, and X

as the only independent variables reduces the number of independent variables to

a manageable number, and allows direct comparison to the results of Nayeem, et.

al.(42).

* United-atom model potential energy functions. Non-polar hydrogen atoms are not

represented, and the carbon atoms to which they are bonded are modified to account

for their effects.

The remainder of this section proposes a design for this application. The encoding

scheme for the energy function is based upon a string of 24 genes and a genic alphabet

of cardinality 3600. Each gene corresponds to one of the free bond or torsion angles,

each of which can take on any value between 0 and 360 degrees, in 0.1 degree increments.

The encoding scheme uses a string length of 24, with each gene corresponding to a single

independent variable.

The fitness function for the application is a C translation of that portion of the

MM2 molecular dynamics code which performs energy function evaluation. MM2 is well

established in the computational chemistry community. It supports use of the Z-matrix

representation of a molecule, which allows direct evaluation of the angles represented by

the genes in the MGA strings. It includes contributions due to bond stretch, bond angle

deformation, torsion angle hindered rotation, and non-bonded interactions. The evaluation

function takes as input a fully specified solution in MGA representation. It first decodes the

input arguments, using the map table established by the initialization function to complete

the specification of the molecule. It then computes the total energy of the molecule, which

it returns as the fitness of the solution.

The domain initialization function defines the cardinality of the genic alphabet and

initializes the molecular data. It obtains the molecular data from a file containing a Z-

matrix representation of the molecule under study. The Z-matrix representation specifies
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a bond length, a bond angle, and a torsion angle for each atom, except in cases where

fewer constraints are required to unambiguously define the position of an atom. It also

designates which of the variables are free. The initialization function creates a mapping

table which uniquely identifies each free variable with a string position.

The overlay function takes as input a partial solution and a template, both in MGA

representation. It produces a fully specified solution by taking genes corresponding to

unspecified loci, first from the partial solution, then from the template.

AFIT's current MGA implementations are not capable of supporting genic alphabets

of cardinality more than 255. Thus, implementation of this design necessitates modification

of the MGA to support larger genic alphabets. Also, the proposed large genic alphabet im-

plies a very large number of solutions in the initial population. Therefore, this application

also necessitates the reduction of the memory requirement described above.

8.5 Extension of Parallelization Experiments.

The results of this study are, strictly speaking, valid only for the particular prob-

lems examined. In order to better assess their implications in general, application of the

parallel messy genetic algorithm and parallel genetic algorithm to other problems is re-

quired. Furthermore, the results are valid only for 8-node hypercubes. In order to assess

the scalability of the methods, experiments on larger architectures are required. Because

several of the communication strategies do not converge within 200 generations, a more

sophisticated termination criteria based on convergence characteristics is recommended.

123



Appendix A. MGA Generalization Experimental Data.

This appendix contains the raw data from the generalized MGA performance ex-

periments, including the fully deceptive binary function problem (Section A.1), the TSP

(Section A.2), and Rosenbrock's Saddle (Section A.3). The data are summarized and

interpreted in Chapter IV.

A.1 Fully Deceptive Function Data.

Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 300 1 298 2 290 3 296
4 298 5 296 6 300 7 296
8 296 9 298 10 296 11 296

12 298 13 298 14 300 15 300
16 294 17 298 18 300 19 298
20 300 21 296 22 296 23 294
24 298 25 296 26 300 27 298
28 298 29 296 30 298 31 296
32 296 33 296 34 298 35 296
36 300 37 296 38 298 39 294

Table 41. Fully Deceptive Function Generalized Messy GA Best Perfomance

Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 298 1 300 2 300 3 296
4 296 5 298 6 298 7 298
8 300 9 298 10 298 11 298

12 298 13 300 14 296 15 298
16 300 17 300 18 300 19 298
20 298 21 298 22 300 23 298
24 294 25 300 26 298 27 300
28 300 29 300 30 292 31 298
32 298 33 300 34 300 35 296
36 294 37 300 38 296 39 300

Table 42. Fully Deceptive Function Original Messy GA Best Perfomance
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Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 284 1 286 2 286 3 284

4 284 5 284 6 286 7 286
8 286 9 284 10 288 11 286

12 286 13 282 14 284 15 286
16 286 17 284 18 284 19 288

20 288 21 286 22 282 23 284
24 284 25 296 26 284 27 286

28 288 29 284 30 286 31 282
32 286 33 280 34 284 35 288
36 284 37 286 38 284 39 288

Table 43. Fully Deceptive Function Simple GA Best Perfomance

MNR
Gens Trials Lost Cony Kntr Online Offline Best Average

0 2030 0 0 0.509 1.498e+02 3.792s÷01 3.080e+01 1.498e+02
1 3929 0 0 0.513 1.464e+02 3.298.+01 2.610e+01 1.424e+02

2 5834 0 0 0.519 1.438e+02 3.010e+01 2.330e+01 1.381.+02
3 7739 0 0 0.526 1.418e+02 2.817e+01 2.145e+o1 1.352e+02

4 9637 0 0 0.533 1.402e+02 2.673e+01 2.030e+01 1.329e+02
5 11538 0 0 0.540 1.388e+02 2.551e+o1 1.900O+O1 1.311.+02
6 13435 0 0 0.549 1.375e+02 2.448e+01 1.755e+O1 1.291e+02
7 15328 0 0 0.557 1.363e+02 2.361e+01 1.715e+01 1.272e+02

8 17220 0 0 0.566 1.351e+02 2.285e+o1 1.620e+01 1.253e+02
9 19110 0 0 0.575 1.340e+02 2.218.+01 1.600e+o1 1.231e+02

10 21005 0 0 0.585 1.329e+02 2.160e+01 1.545e+01 1.208e+02
11 22895 0 0 0.595 1.317e+02 2.109e+01 1.530.+01 1.186e+02
12 24786 0 0 0.605 1.306e+02 2.064e+01 1.525e+01 1.164e+02
13 26671 0 0 0.616 1.2965+02 2.026e+o1 1.510e+01 1.140e+02
14 28559 0 0 0.626 1.283e+02 1.991e+01 1.490e+o1 1.115e+02
15 30431 0 0 0.637 1.272e+02 1.9600+01 1.485e+01 1.090.+02
16 32306 0 0 0.648 1.260.+02 1.932e+01 1.475e+O1 1.061e+02
17 34170 0 0 0.660 1.248e+02 1.907e+01 1.475e+01 1.032e+02
18 36031 0 0 0.671 1.236e+02 1.885e+01 1.470e+01 1.002e+02
19 37884 0 0 0.683 1.223e+02 1.865e+01 1.470e+o1 9.720e+o1
20 39734 0 0 0.694 1.210e+02 1.846e+01 1.465.4+1 9.414e+01
21 41573 0 0 0.706 1.197e+02 1.829e+01 1.465e+01 9.070e+01

Table 44. Fully Deceptive Function Simple GA Performance Means by Generation
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VARIANCE
Goea Trials Lost Conyv Entr Online Otffine Beat Average

0 o 0 0 0.000 9.968e-O1 5.750.401 4.755.4+01 9.968e-O1
0 253 0 0 0.000 9.152e-01 3.936.401 4.307e+01 1.235s400
0 495 0 0 0.000 8.703e-01 3.147e401 3.334.401 I.522e400
0 593 0 0 0.000 7.096.-Ol 2.552.401 2.195.401 1.064e400
0 705 0 0 0.000 6.571.-Ol 2.188.401 1.550e401 1.209e400
0 900 0 0 0.000 6.226.-Ol 1.865.401 1.169.401 1.424.400
0 1139 0 0 0.000 5.954.-Ol 1.597.401 1.323.401 1.356o400
0 1482 0 0 0.000 5.418.-Ol 1.397.401 1.228.401 9.088e-Ol
0 1872 0 0 0.000 6.617e-01 1.248e401 1.124.401 1.516.400
0 1638 0 0 0.000 5.918e-O1 1.134.401 1.046.401 1.873.400
0 1692 0 0 0.000 6.548.-Ol 1.037.401 9.228.400 2.385.400
0 1780 0 0 0.000 7.338.-Ol 9.585.400 9.138.400 2.898.400
0 1959 0 0 0.000 8.035e-Ol 9.017e+00 9.167e+00 3.099e+00
0 1945 0 0 0.000 8.635.-01 8.566.400 8.400.400 2.683e+00
0 2334 0 0 0.000 9.325.-Ol 8.170e400 7.169.400 3.725.400
0 2404 0 0 0.000 1.014.400 7.816.400 6.746e+00 3. 836.400
0 2903 0 0 0.000 1.110.400 7.493e400 6.500.400 4.943.400
0 3448 0 0 0.000 1.245.400 7.228e400 6.500.400 6.936e400
0 4159 0 0 0.000 1.394e400 6.989.400 6.267.400 7.022.400
0 5370 0 0 0.000 1.517.400 6.795e+00 6.267e400 6.792.400
0 5874 0 0 0.000 1.640.400 6.633e+00 6.438e+00 6.352e400
0 6180 0 0 0.000 1.777.400 6.496.400 6. 438o+00 7.859.400

Table 45. Fully Deceptive Function Simple GA Performance Variance by Generation

Rix
Gens Trials Lout Cony Kntr Online Offlin. Beat Average

0 2030 0 0 0.513 1.518.402 5.094.401 4.400e401 1.518*402
1 3958 0 0 0.518 1.484e+02 4.486.401 4.200.401 1.446.402
2 5878 0 0 0.525 1.458*402 4.279.401 3.800.401 1.401e+02
3 7782 0 0 0.533 1.437o402 3.919.401 3.200.401 1.370e402
4 9698 0 0 0.541 1.418*402 3.658.401 2.600.401 1.352e+02
5 11598 0 0 0.549 1.404e+02 3.482s+01 2.600e401 1.342.402
6 13500 0 0 0.558 1.391.402 3.290e401 2.400.401 1.322e+02
7 15424 0 0 0.568 1.379e+02 3.104.401 2.400e401 1.291e+02
8 17348 0 0 0.577 1.367.402 2.961e401 2.2O0e401 1.281o+02
9 19202 0 0 0.587 1.356e+02 2.846e401 2.200.401 1.266e+02

10 21130 0 0 0.698 1.344o+02 2.763.401 2.200.401 1.246e+02
11 23016 0 0 0.608 1.334*402 2.676e+01 2.200e401 1.221.402
12 24896 0 0 0.619 1.326.402 2.607.401 2.200.401 1 .220e+02
13 26768 0 0 0.630 1.317.402 2.550.401 2.200.401 1.192.402
14 28682 0 0 0.643 1. 308o+02 2. 500e401 2. 000e401 1.166.402
15 30550 0 0 0.654 1.297e402 2.457.401 2.000e401 1.137*402
16 32438 0 0 0.865 1.287.402 2.412e+01 2.000e401 1.118*402
17 34326 0 0 0.677 1.277o+02 2.368e401 2.000e401 1.104e+02
18 36190 0 0 0.691 1.268.402 2.328s+01 2.000.401 1.084e+02
19 38070 0 0 0.701 1.256ee02 2.293e401 2.000e401 1.033e+02
20 39952 0 0 0.713 1.245.402 2.270*401 2.000.401 9.982e+01
21 41790 0 0 0.725 1.233*402 2.258e401 2.000e+01 9.712s+01

Table 46. Fully Deceptive Function Simple GA Worst Performance by Generation

126



His
Bans Trials Lost Conv Entr online Offlin. Best Average

0 2030 0 0 0.506 1.479e+02 1.438.+01 1.400*401 1. 479e402
1 3898 0 0 0.510 1.442e402 1.419e+01 1.400*401 1. 394e+02
2 5792 0 0 0.516 1.415e402 1.413.401 1.400e401 1.357e+02
3 7694 0 0 0.521 1.400e+02 1.410s401 1.400e401 1.330e402
4 9578 0 0 0.526 1.385e+02 1.408.401 1.400.401 1.308.402
6 11460 0 0 0.531 1.372e402 1.407s401 1.400.401 1.282e+02
6 13338 0 0 0.539 1.360.402 1.406.401 4.000e+00 1.267e402
7 15214 0 0 0.547 1.348e+02 1.405e401 4.000*400 1.253.402
8 17104 0 0 0.554 1.337.402 1.404.401 4.000e400 1.233.402
9 19014 0 0 0.562 1.325e402 1.404.401 4.000s400 1.209e402

10 20926 0 0 0.571 1.312e+02 1.404.401 4.000e400 1.179.402
11 22824 0 0 0.579 1.3019402 1.403.401 4.000e,00 1.157.402
12 24708 0 0 0.586 1.289e402 1.403.401 4.000.400 1.135.402
13 26582 0 0 0.597 1.276e+02 1.345.401 4.000e400 1.107.402
14 28460 0 0 0.604 1.263.402 1.283.401 4.000.400 1.068.402
15 30350 0 0 0.612 1.249e402 1.228e401 4.000.400 1.034e+02
16 32210 0 0 0.622 1.2369+02 1.180s401 4.000e400 1.015.402
17 34070 0 0 0.633 1.223e402 1.138.401 4.000.400 9.821e+01
18 35910 0 0 0.643 1.209.402 1.100.401 4.000.400 9.458.401
19 37736 0 0 0.656 1.196e+02 1.065.401 4.000e400 9.220e+01
20 39594 0 0 0.668 1.182.402 1.034.401 4.000.400 8.883.401
21 41450 0 0 0.679 1.168.402 1.006.401 4.000.400 8.560e401

Table 47. Fully Deceptive Function Simple GA Best Performance by Generation

127



A.2 Combinatoric Optimization Data.

ITrial Best solution Trial Best solution Trial Best solution Trial Best solution
0 1410 1 1503 2 1503 3 1410
4 1410 5 1410 6 1627 7 1410
8 1410 9 1410 10 1538 11 1699

12 1410 13 1410 14 1410 15 1410
16 1410 17 1410 18 1410 19 1410
20 1410 21 1410 22 1410 23 1410
24 1669 25 1410 26 1627 27 1503
28 1627 29 1410 30 1523 31 1410
32 1410 33 1410 34 1410 35 1523
36 1410 37 1590 38 1410 39 1410

Table 48. TSP Generalized Messy GA Best Perfomance

"Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 1000000 1 1000000 2 1000000 3 1000000
4 1000000 5 1000000 6 1000000 7 1000000
8 1000000 9 1000000 10 1000000 11 1000000

12 1000000 13 1000000 14 1000000 15 1000000
16 1000000 17 1000000 18 1000000 19 1000000
20 1000000 21 1000000 22 1000000 23 100000024 1000000 25 1000000 26 1000000 27 1000000
28 1000000 29 1000000 30 1000000 31 1000000
32 1000000 33 1000000 34 1000000 35 1000000
36 1000000 37 1000000 38 1000000 39 1000000

Table 49. TSP Original Messy GA Best Perfomance

Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 1.0+06 1 1.0+06 2 1.0+06 3 1.0+06
4 1.0+06 5 1.0+06 6 1.0+06 7 1.0+06
8 1.0+06 9 1.0+06 10 1.0+06 11 1.0+06

12 1.0+06 13 1.0+06 14 1.0+06 15 1.0+06
16 1.0+06 17 1.0+06 18 1.0+06 19 1.0+06
20 1.0+06 21 1.0+06 22 1.0+06 23 1.0+06
24 1.0+06 25 1.0+06 26 1.0+06 27 1.0+06
28 1.0+06 29 1.0+06 30 1.0+06 31 1.0+06
32 1.0+06 33 1.0+06 34 1.0+06 35 1.0+06
36 1.0+06 37 1.0+06 38 1.0+06 39 1.0+06

Table 50. TSP Simple GA Best Perfomance
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Trial , Best solution Trimal Best solution Trial Best solution Trial Best solution
0 2.025e+03 1 1.722e+0

3  
2 2.209e+03 3 2.256e+03

4 1.912e+03 5 2.139e+0
3  

6 1.777e+03 7 2.118e+03
8 2.234e+03 9 1.914e+03 10 1.777e+03 11 1.931e+03

12 1.914e+03 13 1.912e+03 14 2.025e+03 15 2.152e+03
16 1.972e+03 17 2.156e+03 18 1.914e+03 19 2.234e+03
20 1.777e+03 21 1.914e+03 22 2.330e+03 23 2.176e+03

24 2.048e+03 25 2.266e+03 26 1.867e+03 27 2.156e+03
28 1.972e+03 29 2.156e+03 30 2.221e+03 31 1.931e+03
32 2.235e+03 33 2.156e+03 34 2.340e+03 35 1.954e+03
36 1.969e+03 37 1.847e+03 38 1.889e+03 39 2.354e+03

Table 51. TSP Permutation GA Best Perfomance

HEIN
Gens Trials Lost Cony Entr Online Offline Best Average

0 2376 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
1 4392 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
2 6418 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
3 8440 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000.+06
4 10467 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06

5 12485 0 0 0.508 1.000e+06 1.000s+06 1.000e+06 1.000e+06
6 14509 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
7 16527 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
8 18544 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000.+06
9 20564 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06

10 22590 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
11 24610 0 0 0.508 1.000.+06 1.000e+06 1.000e+06 1.000e+06
12 26631 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
13 28650 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
14 30672 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
15 32694 0 0 0.508 1.000e+06 1.000e+06 1.000.+06 1.000e+06
16 34713 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
17 36730 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
18 38752 0 0 0.508 1.000.+06 1.000e+06 1.000e+06 1.000.+06
19 40769 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
20 42793 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
21 44818 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
22 46842 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
23 48859 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
24 50883 0 0 0.508 1.000.+06 1.000.+06 1.000.+06 1.000e+06
25 52905 0 0 0.508 1.000e+06 1.000o+06 1.000e+06 1.000e+06
26 54920 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
27 56944 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
28 58966 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
29 60983 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06
30 63008 0 0 0.508 1.000.+06 1.000.+06 1. 000e+06 1.000.+06
31 65030 0 0 0.508 1.000e+06 1.000e4+06 1.000e+06 1.000.+06
32 67056 0 0 0.508 1.000e+06 1.000e+06 1.000e+06 1.000e+06

Table 52. TSP Simple GA Performance Means by Generation
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VARIANCE
Geos Trisls Lost Cony Kntr Online Offline Best Average

0 0 0 0 0.000 0.00 00 0.000+.00 0.000e.00 0.0004e00
0 552 0 0 0.000 0.000e+00 0.000.400 0.000e+00 0.000e+00
0 1003 0 0 0.000 0.000e+00 0.000e+40 0.000.+00 0.000.+00
0 1759 0 0 0.000 0.000.+00 0.000e+00 0.000e+00 0.000.+00
0 1742 0 0 0.000 0.000e+00 0.000.+00 0.000.+00 0.000.+00
0 2474 0 0 0.000 0.00 00 0.000e+00 0.000e+00 0.000e+O0
0 3084 0 0 0.000 0.000,+00 0.000+00 0.000e+00 0.000+400
0 3595 0 0 0.000 0.000,+00 0.000e+00 0.000.+00 0.000e+00
0 4141 0 0 0.000 0.000.+00 0.000.+00 O.0006+00 0.000+400
0 4051 0 0 0.000 0.000.+00 0.000.+00 0.0000400 0.000.400
0 4563 0 0 0.000 0.000s+00 0.000e+00 0.000e+00 0.000e+O0

0 5376 0 0 0.000 0.000e+00 0.000+400 0.000.0+0 0.0000400
0 5410 0 0 0.000 0.000.+00 0.000e+00 0.0000400 0.000.+00
0 5914 0 0 0.000 0.000,+00 0.000e+00 0.000.+00 0.000.+00
0 6642 0 0 0.000 0.000.+00 0.000.+00 0.0004+00 0.000.+00
0 6950 0 0 0.000 0.000e+00 0.000e+00 0.000.+00 0.000.+00
0 7282 0 0 0.000 0.000.+00 0.0000+00 0.000.+00 0.000e+00
0 6289 0 0 0.000 0.000.+00 0.000.+00 0.000.+00 0.000.+00
0 6531 0 0 0.000 0.000.+00 0.000.+00 0.000.+00 0.0004-00
0 7362 0 0 0.000 0.000e+00 0.0000400 0.000.+00 0.000e+00
0 7982 0 0 0.000 0.000.+00 0.000.400 0.000e+00 0.000.+00
0 8012 0 0 0.000 0.000.+00 0.0000400 0.000.+00 0.000.+00
0 8093 0 0 0.000 0.000e+00 0.000.+00 0.000e+00 0.000.+00
0 9598 0 0 0.000 0.000e+00 0.000.+00 0.000e+00 0.000.+00
0 9994 0 0 0.000 0.000.+00 0.000.+00 0.000e+00 0.000.+00
0 10540 0 0 0.000 0.000.+00 0.000e+00 0.000.+00 0.000.+00
0 10903 0 0 0.000 0.000.+00 0.000.+00 0.000e+00 0.000.+00
0 11632 0 0 0.000 0.000.+00 0.000.+00 0.000.+00 0.000.+00
0 12202 0 0 0.000 0.000.+00 0.000.+00 0.000.+00 0.000.+00
0 13792 0 0 0.000 0.000.+00 0.000.+00 0.000.+00 0.000.+00
0 12366 0 0 0.000 0.000e+00 0.000.+00 0.000.+00 0.000e+00
0 14153 0 0 0.000 0.000e+00 0.000.+00 0.000+00 0.000.+00
0 14665 0 0 0.000 0.000.+00 O.000e+00 0.000.+00 0.000.+00

Table 53. TSP Simple GA Performance Variance by Generation
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MAI
Gens Trials Lost Cony Entr Online Offlin. Best Average

0 2376 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000.+06
1 4442 0 0 0.613 1.000e+06 1.000e+06 1.000e+06 1.000e+06

2 6478 0 0 0.513 1.000e+06 1.000e+06 1.000.+06 1.000e+06
3 8534 0 0 0.513 1.000e+06 1.000.+06 1.000e+06 1.000e+06
4 10572 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
5 12590 0 0 0.513 1.000e+06 1.000.+06 1.000e+06 1.000.+06
6 14620 0 0 0.513 1.000e+06 1.000.+06 1.000e+06 1.000.+06
7 16644 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
8 18660 0 0 0.513 1.000e+06 1.000e+06 1.000.+06 1.000e+06
9 20672 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06

10 22708 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000.+06
11 24768 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
12 26790 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06

13 28820 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
14 30876 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06

15 32896 0 0 0.513 1.000e+06 1.000.+06 1.000e+06 1.000e+06
16 34940 0 0 0.513 1.000e+06 1.000.+06 1.000e+06 1.000e+06
17 36966 0 0 0.513 1.000e.06 1.000e+06 1.000.+06 1.000e+06
18 39010 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000.+06
19 41016 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000.+06
20 43060 0 0 0.513 1.000.+06 1.000e+06 1.000e+06 1.000e+06
21 45096 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000.+06
22 47112 0 0 0.513 1.000.+06 1.000e+06 1.000e+06 1.000.+06
23 49140 0 0 0.513 1.000.+06 1.000e+06 1.000.+06 1.000e+06
24 51130 0 0 0.513 1.000e+06 1.000.+06 1.000e+06 1.000.+06
25 53134 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
26 55148 0 0 0.513 1.000e+06 1.000.+06 1.000.+06 1.000e+06
27 57184 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000.+06
28 59208 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
29 61216 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06
30 63218 0 0 0.513 1.000e+06 1.000e+06 1.000.+06 1.000e+06
31 65272 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06

32 67294 0 0 0.513 1.000e+06 1.000e+06 1.000e+06 1.000e+06

Table 54. TSP Simple GA Worst Performance by Generation
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KIN
Goes Trials Lost Cony Entr Online Offlin. Best Average

0 2376 0 0 0.505 1.000e+06 1.000e606 1.000e406 1.000.606
1 4338 0 0 0.505 1.000.406 1.000.406 1.000e+06 1.000.406
2 6336 0 0 0.505 1.000e406 1.000.406 1.000.406 1.000e406
3 8352 0 0 0.505 1.000.406 1.000e+06 1.000e406 1.000e406
4 10346 0 0 0.505 1.000e406 1.000.406 1.000.406 1.000e406
5 12362 0 0 0.505 1.000.406 1.000.406 1.000e406 1.000.406
6 14378 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000o406
7 16396 0 0 0.505 1.000e406 1.000.406 1.000.406 1.000.406
8 18392 0 0 0.505 1.000.406 1.000e406 1.000e406 1.000.406

9 20390 0 0 0.505 1.000.406 1.000e406 1.000.406 1.000e406
10 22408 0 0 0.505 1.000e406 1.000.406 1.000.406 1.000.406
11 24422 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
12 26468 0 0 0.505 1.000.+06 1.000.+06 1.000.406 1.000.+06
13 28446 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000e406
14 3051 0 0 0.505 1.000.406 1.000e406 1.000e406 1.000e+06

15 32506 0 0 0.505 1.000.406 1.000o406 1.000.406 1.000.406
16 34518 0 0 0.505 1.000e+06 1.000.406 1.000.406 1.000.406
17 36554 0 0 0.505 1.000.406 1.000.406 1.000.406 1.0004+06
18 38572 0 0 0.505 1.000.406 1.000.406 1.000.406 1 .000o+06
19 40586 0 0 0.505 1.000.406 1.000.406 1.000e406 1.000.606
20 42618 0 0 0.505 1.000.406 1.000o406 1.000.406 1.000e406
21 44620 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
22 46678 0 0 0. 505 1.000.406 1.000e406 1.000.406 1.000*406
23 48684 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
24 50690 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
25 52680 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
26 54658 0 0 0.505 1.000.+06 1.000.+06 1.000.+06 1.000.+06
27 56696 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
28 58718 0 0 0.505 1.000.406 1.000.406 1.000e406 1.000.406
29 60706 0 0 0.505 1.000.406 1.000.406 1.000.406 1.000.406
30 62748 0 0 0.505 1.000.406 1.000.406 1.0004+06 1.000.406
31 84780 0 0 0.505 1.000.406 1.000e406 1.000.406 1.000e406
32 66834 0 0 0.505 1.000.406 1.000.406 1.000*406 1.000e406

Table 55. TSP Simple GA Best Performance by Generation
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NEAR
Gans Trials Lost Con? Entr Online Off lize Best Average

0 2376 1 0 0.965 6.793e+03 2.883e403 2.607.403 5.793e+03
1 4752 1 0 0.965 5.792e+03 2.684e+03 2.443e403 5.792.403
2 7128 1 0 0.965 5.791e403 2.696e+03 2.380e403 5.790e403
3 9504 1 0 0.965 5.791.403 2.538e403 2.347.403 5.791.403
4 11880 1 0 0.965 5.791e403 2.499.403 2.328e+03 5.790e+03
5 14256 1 0 0.965 5.791.403 2.466.403 2.290.403 5.791.403
6 16632 1 0 0.965 5.791e+03 2.440e+03 2.281e+03 5.794e+03
7 19008 1 0 0.965 6.791.403 2.420e+03 2.275e403 5.792.403
8 21384 1 0 0.965 6.791e+03 2.402e+03 2.257.403 5.790e403
9 23760 1 0 0.965 5.791.403 2.387.403 2.222e403 5.793e403
10 26138 1 0 0.965 5.792e403 2.370.403 2.193e+03 5.793e403
11 28512 1 0 0.965 5.791e403 2.354e+03 2.1829403 6.789e+03

12 30888 1 0 0.965 5.791e+03 2.340e+03 2.161e+03 5.788e403
13 33264 1 0 0.965 5.791,403 2.327.403 2.152e+03 5.786e+03
14 35640 1 0 0.965 5.7919+03 2.315.403 2.1529+03 5.790e403
15 38016 1 0 0.965 5.791.403 2.306e+03 2.148.403 5.790.403
16 40392 1 0 0.965 5.791e+03 2.295e403 2.1419+03 5.792e+03
17 42768 1 0 0.965 5.790e403 2.286.403 2.120.403 6.786e+03
18 45144 1 0 0.965 5.790.403 2.277e403 2.118e+03 5.790e403
19 47520 1 0 0.965 5.790e+03 2.269,403 2.113e+03 5.790.403
20 49896 1 0 0.965 6.790e403 2.261@+03 2.108e403 5.793*403
21 52272 1 0 0.965 5.790.403 2.254.403 2.097.403 5.790.403
22 54648 1 0 0.966 5.790.403 2.247.403 2.092.403 5.788e+03
23 57024 1 0 0.965 5.790,403 2.240.403 2.068e403 5.790e403
24 59400 1 0 0.965 5. 790e+03 2.233.403 2.068.403 5.793e403
25 61776 1 0 0.965 5.790e403 2.227e403 2.059e+03 5.787.403
26 64152 1 0 0.965 5.790,9403 2.220.403 2.059s+03 5.789e+03

27 66528 1 0 0.965 5.790e403 2.215.403 2.046e+03 5.785.403

Table 56. TSP Permutation GA Performance Means by Generation
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VARIAICE
Goes Trials Lost Cony Entr Online Offline Beat Average

0 0 0 0 0.000 4.291e+02 3.446.404 8.161s404 4.291e+02
0 0 0 0 0.000 1.708e402 3.050e404 4.379e404 3.683e402

0 0 0 0 0.000 1.0649402 2.822e404 3.268e404 4.680e402

0 0 0 0 0.000 8.713e401 2.524e404 2.504e404 4.975.402
0 0 0 0 0.000 5.813.401 2.252e404 3.255e404 3.920e+02
0 0 0 0 0.000 5.940e401 2.121e404 3.714e404 5.818e402

0 0 0 0 0.000 5.538e401 2.076e+04 3.585e+04 3.492e402

0 0 0 0 0.000 5.021.401 2.088e404 3.520.404 5.310e+02
0 0 0 0 0.000 4.832e+01 2.094e+04 3.591e404 3.406.402

0 0 0 0 0.0,00 4.461e+01 2.100e404 3.564e404 3.195e+02
0 0 0 0 0.000 3.890e+01 2.015.404 2.907.404 3.284e402
0 0 0 0 0.000 3.637e401 1.940e+04 2.729.404 3.790.402

0 0 0 0 0.000 3.206e401 1.845s404 2.914e404 3.865e402
0 0 0 0 0.000 2.653.401 1.763e+04 3.151e+04 4.946e402

0 0 0 0 0.000 2.612.401 1.709e+04 3.151,404 4.287.402
0 0 0 0 0.000 2.867.401 1.679e+04 3.068.404 3.850.402
0 0 0 0 0.000 2.724e+01 1.672e+04 3.168.404 5.011e+02
0 0 0 0 0.000 2.772.401 1.6709404 3.509.404 3.994e+02
0 0 0 0 -0.000 2.600e401 1.676e+04 3.415e404 3.937e402

0 0 0 0 -0.000 2.674e+01 1.678e404 3.266e+04 4-078e+02
0 0 0 0 0.000 2.430e+01 1.688e+04 3.169e404 3.453*402

0 0 0 0 0.000 2.284,401 1.694.404 3.058.404 4.518.402
0 0 0 0 0.000 2.387e+01 1.699.404 2.908.404 3.421.402
0 0 0 0 0.000 2.097.401 1.696.404 3.110.404 3.787o402
0 0 0 0 0.000 1.925e401 1.701.404 3.110e+04 3.766e+02

0 0 0 0 0.000 1.862.401 1.705.404 3.043.404 3.789e+02

0 0 0 0 0.000 1.603e+01 1.710.404 3.043.404 3.289e402
0 0 0 0 0.000 1.691.401 1.713.404 3.039.404 5.561e+02

Table 57. TSP Permutatiop GA Performance Variance by Generation
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MAX
Gens Trials Lost Cony Entr Online Offline Best Average

0 2376 1 0 0.965 5.829e+03 3.232e+03 3.152e+03 5.829e+03
1 4752 1 0 0.965 5.829e+03 3.080e+03 2.975e+03 5.835e+03

2 7128 1 0 0.965 5.818e+03 2.964e.03 2.808e+03 5.831e+03
3 9504 1 0 0.965 5.812e+03 2.866e.03 2.673.+03 5.837e+03
4 11880 1 0 0.965 5.807e+03 2.791e+03 2.673e+03 5.836e+03
5 14256 1 0 0.965 5.814e+03 2.751e+03 2.588e+03 5.847e+03
6 16632 1 0 0.965 5.816e+03 2.728e+03 2.588e+03 5.827e+03

7 19008 1 0 0.965 5.813e+03 2.710e+03 2.588e+03 5.850e+03
8 21384 1 0 0.965 5.812e+03 2.697e+03 2.588e+03 5.819e+03
9 23760 1 0 0.965 5.811e+03 2.686e+03 2.588e+03 5.844e+03

10 26136 1 0 0.965 5.811e+03 2.668e+03 2.492e+03 5.825e+03
11 28512 1 0 0.965 5.808e+03 2.641.+03 2.469e+03 5.828e+03

12 30888 1 0 0.965 5.807e+03 2.5929+03 2.4699+03 5.828e+03
13 33264 1 0 0.965 5.804,+03 2.544e+03 2.469e+03 5.828e+03
14 35640 1 0 0.965 5.803e+03 2.531e+03 2.469e+03 5.831e+03
15 38016 1 0 0.965 5.803e+03 2.519e+03 2.469e+03 5.826e+03
16 40392 1 0 0.965 5.802e+03 2.509e+03 2.469e+03 5.840e+03
17 42768 1 0 0.965 5.801e+03 2.506e+03 2.469e+03 5.847e+03
18 45144 1 0 0.965 5.801e+03 2.503e+03 2.421e+03 5.827e+03
19 47520 1 0 0.965 5.802e+03 2.499e+03 2.421e+03 5.832.+03
20 49896 1 0 0.965 5.801e+03 2.495e+03 2.421e+03 5.847e+03

21 52272 1 0 0.965 5.801e+03 2.489e+03 2.354e+03 5.835o+03
22 54648 1 0 0.965 5.802.+03 2.483e+03 2.364e+03 5.828e+03

23 57024 1 0 0.965 5.800s+03 2.478e+03 2.354e+03 5.844e+03
24 59400 1 0 0.965 5.798.+03 2.473e+03 2.354.+03 5.827e+03
25 61776 1 0 0.965 5.799e+03 2.468e+03 2.354e+03 5.826.+03

26 64152 1 0 0.965 5.798e+03 2.464e+03 2.354e+03 5.827e+03
27 66528 1 0 0.965 5.798e+03 2.460e+03 2.354e+03 6.829e.03

Table 58. TSP Permutation GA Worst Performance by Generation
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MNI
Gens Trials Lost Conv hntr Online Of flun Best Average

0 2376 1 0 0.964 5.752e403 2.506e403 2.086.+03 6.752e403
1 4752 1 0 0.964 5.769e+03 2.358s+03 2.086e+03 5. 760.403
2 7128 1 0 0.964 5.769e403 2.278e403 2.086.403 5.738e403
3 9504 1 0 0.964 5.776e403 2.238e403 2.086e403 6.747.403
4 11880 1 0 0.964 5.772e403 2.214.403 1.722e403 5.751.403
5 14256 1 0 0.964 5.778.403 2.198s403 1.722e403 5.732a+03
6 16632 1 0 0.964 5.778.403 2.184.403 1.722e+03 5.747.403
7 19008 1 0 0.964 5.779e403 2.127e+03 1.722e+03 5.746.403
8 21384 1 0 0.964 5.779e403 2.082.403 1.722e403 5.743e403
9 23760 1 0 0.964 5.779.403 2.045.403 1.722e+03 5.752e403

10 26138 1 0 0.964 6.782e+03 2.016e403 1.722e+03 5.748.403
11 28512 1 0 0.964 5.780.403 1.991o+03 1.722e+03 5.745e403
12 30888 1 0 0.964 5.782.403 1.970s+03 1.722e+03 5.739e403
13 33264 1 0 0.964 5.782e+03 1.952e+03 1.722e+03 5.741e+03
14 35640 1 0 0.964 5.780.403 1.937.403 1.7229+03 5.747e403
15 38016 1 0 0.964 6.779e+03 1.923e+03 1.722.403 6.742e403
16 40392 1 0 0.964 5.781.403 1.911e+03 1.722e+03 5.749e403
17 42768 1 0 0.964 5.780e+03 1.901e+03 1.722e403 5.752e+03
18 45144 1 0 0.965 5.781e403 1.891o403 1.722e403 5.746.403
19 47520 1 0 0.965 5.781.403 1.883.403 1.722s403 5.743e403
20 49896 1 0 0.964 5.780.403 1.876e+03 1.722e+03 5.761o+03
21 52272 1 0 0.964 5.781e+03 1.868e+03 1.722e+03 5.747e403
22 54648 1 0 0.964 5.780.403 1.862e+03 1.722.403 5.761e+03
23 57024 1 0 0.964 5.782e403 1.856e403 1.722e+03 5.745e403
24 59400 1 0 0.964 5.782.403 1.850e+03 1.722.403 5.742e+03
25 61776 1 0 0.964 6.781e+03 1.845.403 1.722.403 5.7419+03
26 64152 1 0 0.964 5.7829403 1.841*403 1.722.403 5.738.403
27 66528 1 0 0.964 5.782e+03 1. 836e03 1.722*+03 5.722e+03

Table 59. TSP Permutation GA Best Performance by Generation
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A.3 Functional Optimization Data.

Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 0.026092 1 0.020743 2 0.000639 3 0.011878
4 0.000049 5 0.012921 6 0.008695 7 0.006776
8 0.015415 9 0.009012 10 0.006176 11 0.015256

12 0.009221 13 0.002241 14 0.003616 15 0.003507
16 0.010536 17 0.027167 18 0.005836 19 0.009364
20 0.009586 21 0.005694 22 0.007566 23 0.002265
24 0.007591 25 0.004638 26 0.006271 27 0.009316
28 0.007751 29 0.000551 30 0.008238 31 0.023999
32 0.005836 33 0.004717 34 0.003435 35 0.000146
36 0.002754 37 0.006592 38 0.002874 39 0.008700

Table 60. Rosenbrock's Saddle Generalized Messy GA Best Perfomance

Trial Best solution Trial Best solution Trial Best solution Trial Best solution
1 0.344996 2 0.012690 3 0.000113 4 0.002025
5 0.078416 6 0.076939 7 0.000001 8 0.091986
9 0.088213 10 0.065989 11 0.065989 12 0.000594

13 0.085796 14 0.063520 15 1.002101 16 0.065989
17 0.223559 18 0.000594 19 0.657135 20 0.065989
21 1.002101 22 0.239122 23 0.088742 24 0.000594
25 1.002101 26 0.024123 27 0.001964 28 0.057616
29 0.093537 30 1.518744 31 0.000146 32 0.239198
33 0.129299 34 1.002101 35 0.007653 36 0.342571
37 1.002101 38 0.109685 39 1.037597 40 1.332488

Table 61. Rosenbrock's Saddle Original Messy GA Best Perfomance

Trial Best solution Trial Best solution Trial Best solution Trial Best solution
0 3.344976e-04 1 5.960000e-04 2 8.165610e-05 3 1.289296e-04
4 4.350625e-04 5 1.300625e-04 6 4.160000e-04 7 1.602560e-05
8 4.014001e-04 9 1.654561e-04 10 5.817521e-04 11 1.602560e-05

12 1.718561e-04 13 1.772096e-04 14 1.128256e-04 15 1.012001e-04
16 2.748736e-04 17 5.960000e-04 18 4.296401e-04 19 9.577296e-04
20 4.018321e-04 21 9.611521e-04 22 1.072081,-04 23 2.606416e-04
24 4.388096e-04 25 4.217296e-04 26 1.072081e-04 27 3.740321e-04
28 3.390416e-04 29 7.216976e-04 30 1.516096e-04 31 4.296401e-04
32 1.998416e-04 33 4.014001e-04 34 2.172736e-04 35 2.172736e-04
36 1 .010000e-04 37 1 .300625e-04 38 6.864976e-04 39 1.772096e-04

Table 62. Rosenbrock's Saddle Simple GA Best Perfomance
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HEIN
Gans Trials Lost Cony Entr online Oflline Best Average

0 2024 0 0 0.509 4.969a+02 6.229*-01 1.819e-02 4.959.402
2 5725 0 0 0.514 4.071e402 1.929e-0l 6.930e-03 3.273.402
3 7579 0 0 0.517 3.799e+02 1.471e-01 4.223e-03 2.926.402
4 9430 0 0 0.519 3.585.402 1.190e-01 3.887e-03 2.673.402
5 11277 0 0 0.520 3.412e+02 1.001.-Ol 3.646e-03 2.488e+02
6 13133 0 0 0.522 3.264.402 8.640e-02 2.687e-03 2.341e+02
7 14984 0 0 0.523 3.140.402 7.603e-02 2.466e-03 2.232.402
8 16834 0 0 0.524 3.030e+02 6.794e-02 2.216e-03 2.119e+02
9 18679 0 0 0.525 2.938e+02 6.145e-02 1.976e-03 2.066e+02

10 20527 0 0 0.526 2.864e+02 5.608e-02 1.797e-03 1.983e+02
11 22374 0 0 0.527 2.781.402 5.159e-02 1.523e-03 1.938.402
12 24221 0 0 0.528 2.714.402 4.776e-02 1.408e-03 1.880.402
13 26304 0 0 0.529 2.648e+02 4.410e-02 1.1480-03 1.834e+02
15 2954 0 0 0.531 2.6565e02 3.939e-02 9.150*-04 1.768e+02
16 31617 0 0 0.532 2.503e402 3.685e-02 8.193e-04 1.733.402
17 33466 0 0 0.532 2.460.402 3.486e-02 7.636.-04 1.705.402
18 35310 0 0 0.533 2.420e+02 3.308e-02 7.636e-04 1.662.402
19 37155 0 0 0.533 2.382e402 3.147e-02 7.320e-04 1.634.402
20 38998 0 0 0.533 2.347.402 3.002e-02 6.68.e-04 1.621.402
21 40844 0 0 0.534 2.314.402 2.869*-02 5.780e-04 1.691.402
22 42688 0 0 0.535 2.282.402 2.747e-02 6.527e-04 1.568.402
23 44527 0 0 0.535 2.253.402 2.636e-02 6.352e-04 1.549.402
24 46372 0 0 0.536 2.225e402 2.633e-02 6.299e-04 1.544.402
25 48212 0 0 0.536 2.199e+02 2.439e-02 6.294e-04 1.520*402
26 50566 0 0 0.536 2.168e+02 2.327.-02 5.255e-04 1.503.402
28 53418 0 0 0.537 2.132.402 2.2070-02 4. 774e-04 1. 477e+02
29 55582 0 0 0.537 2.108e402 2.122.-02 4.656e-04 1.457.402
30 57423 0 0 0.537 2. 086e+02 2. 056e-02 4.4590-04 1.449.402
31 59262 0 0 0.538 2.066e+02 1.993e-02 4.236s-04 1.428.402
32 61103 0 0 0.538 2.047e402 1.934e-02 4.182.-04 1.417e402
33 62942 0 0 0.538 2.029.402 1.879e-02 4.110.-04 1.394.402
34 64784 0 0 0.539 2.011.402 1.826e-02 3.693e-04 1.398.402
35 66823 0 1 0.539 1.994.402 1.777e-02 3.668e-04 1.386e+02
36 68465 0 1 0.539 1.978.402 1.730e-02 3.313e-04 1.381.402
37 70304 0 1 0.539 1.963*402 1. 686e-02 3.242.-04 1.376.402

Table 63. Rosenbrock's Saddle Simple GA Performance Means by Generation
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VARIANCE
Goea Trials Lost Cony Entr Online Offline Best Average

0 0 0 0 0.000 1.472e+02 1.274e-01 2.774e-04 1.472e+02
0 704 0 0 0.000 9.614e+01 1.573e-02 3.170e-05 1.649e+02
0 1109 0 0 0.000 8.495e+01 9.OOfie-03 1.858e-O5 1.354e+02
0 1431 0 0 0.000 7.168.401 6.855s-03 1.6739-05 8.680e+01
0 1653 0 0 0.000 6.223e+01 4.113e-03 1.347e-O5 8.162.401
0 2174 0 0 0.000 5.792.401 3.0486e-03 6.686e-06 1.361e+02
0 2332 0 0 0.000 5.270e+01 2.34le-03 6.548e-06 9.796e+01
0 2821 0 0 0.000 4.976s+01 1.866e-03 5.768e-06 7.530.401
0 3393 0 0 0.000 4.756e401 1.610e-03 4.661e-06 7.454.401
0 4032 0 0 0.000 4.568e+01 1.261e-03 4.6fi0e-06 6.651e401
0 4605 0 0 0.000 4.474e+01 1.056e-03 2.897e-06 7.903e+01
0 4272 0 0 0.000 4.277e+01 8.998e-04 2.942.-OG 8.804.401
0 339046 0 0 0.000 4.410e401 7.674e-04 1.256e-06 9.000.401
0 335845 0 0 0.000 3.854.401 5.986e-04 4.913e-07 6.792.401
0 3815 0 0 0.000 3.410e401 5.292e-04 3.819e-07 4.093.401
0 3436 0 0 0.000 3.235e401 4.728e-04 3.748e-07 4.461e+01
0 3959 0 0 0.000 3.062e401 4.260*-04 3.748*-07 4.396.401
0 5058 0 0 0.000 2.870e401 3.842e-04 3.748e-07 4.741.401
0 5766 0 0 0.000 2.793s401 3,487e-04 3.677e-07 6.017e401
0 5749 0 0 0.000 2.697e+01 3.180e-04 1.958e-07 4.789.401
0 5891 0 0 0.000 2.658.401 2.911e-04 1.876e-07 4.760.401
0 5965 0 0 0.000 2.617e401 2.674e-04 1.805e-07 4.326e401
0 5860 0 0 0.000 2.564e401 2.4679-04 1. 806e-07 5.656.401
0 6370 0 0 0.000 2.466e401 2.282e-04 1.807e-07 4.540e401
0 603041 0 0 0.000 2.345.401 2.061e-04 1.802e-07 5.566e401
0 426513 0 0 0.000 2.450e401 1.862e-04 8.773.-OS 4.798.401
0 8600 0 0 0.000 2.219.401 1.718e-04 8.279.-OS 5.404.401
0 9093 0 0 0.000 2.168.401 1 .609e-04 8. 680e-08 3.267.401
0 9287 0 0 0.000 2.104e+01 1.51le-04 8.122e-08 3.739e401
0 9882 0 0 0.000 2.041e401 1.421e-04 7.687e-08 3.793e401
0 9830 0 0 0.000 1.978e401 1.340e-04 7.920.-OS 4.763.401
0 11078 0 0 0.000 1.937e401 1.265e-04 6.143e-08 6.605.401
0 11943 0 0 0.000 1.901e+01 1.196e-04 6.166e-08 5.700e401
0 12111 0 0 0.000 1.844.401 1.133e-04 6.467e-08 4.066e+01
0 12173 0 0 0.000 1.791.401 1.074e-04 5.548.-OS 2.462.401

Table 64. Rosenbrock's Saddle Simple GA Performance Variance by Generation
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Gones Trials Lost Cony Entr Online Offline Best Iverage
0 2024 0 0 0.512 5.265e+02 1.436e+00 6.678e-02 5.265e+02
2 5772 0 0 0.518 4.311e+02 5.171e-01 2.234e-02 3.525e+02
3 7650 0 0 0.521 4.005e+02 3.926e-01 1.71le-02 3.120e+02

4 9522 0 0 0.523 3.751.+02 3.188e-0l 1..ile-02 2.877e+02
5 11364 0 0 0.525 3.584e+02 2.681e-01 1.385e-02 2.716e+02
6 13234 0 0 0.527 3.4600+02 2.313e-01 1.018e-02 2.653e+02
7 15104 0 0 0.528 3.335e+02 2.032e-01 1.018e-02 2.500e+02
8 16956 0 0 0.530 3.224e+02 1.811e-01 1.018e-02 2.296e+02
9 18818 0 0 0.531 3.119e+02 1.634e-01 1.018e-02 2.211e+02

10 20666 0 0 0.533 3.030e.02 1.489e-01 1.018e-02 2.179e+02

11 22528 0 0 0.534 2.947e+02 1.368e-01 9,414e-03 2.138e+02
12 24352 0 0 0.535 2.873e+02 1.265.-0l 9.414e-03 2.091e+02
14 27846 0 0 0.536 2.807.+02 1.176e-0l 5.661e-03 2.013e+02
15 29840 0 0 0.538 2.684e+02 1.029e-01 3.377e-03 1.934e+02
16 31754 0 0 0.536 2.626e+02 9.697e-02 3.377e-03 1.849e+02
17 33578 0 0 0.539 2.574e+02 9.173e-02 3.377e-03 1.830e+02
18 35438 0 0 0.539 2.526.+02 8.698e-02 3.377e-03 1.831e+02
19 37286 0 0 0.539 2.488e+02 8.270e-02 3.377e-03 1.824e+02
20 39126 0 0 0.540 2.455e+02 7.876e-02 3.377e-03 1.783e+02
21 40976 0 0 0.541 2.422e+02 7.526e-02 2.362e-03 1.726e+02
22 42816 0 0 0.542 2.392e+02 7.201e-02 2.362e-03 1.710e+02
23 44656 0 0 0.542 2.360e+02 6.904e-02 2.362e-03 1.689e+02
24 46514 0 0 0.542 2.335e+02 6.632e-02 2.362e-03 1.685.402
25 48360 0 0 0.543 2.308e+02 6.380e-02 2.362*-03 1.667.+02
27 51866 0 0 0.544 2.284e+02 5.933e-02 2.362e-03 1.641e+02
28 53626 0 0 0.544 2.228e+02 5.734e-02 1.230e-03 1.620e+02
29 55804 0 0 0.544 2.201e+02 6.544.-02 1.230e-03 1.621e+02
30 57656 0 0 0.544 2.179e+02 5.367e-02 1.230e-03 1.609e+02
31 59506 0 1 0.545 2.156e+02 5.201e-02 1.230e-03 1.606e+02

32 61348 0 1 0.546 2.133e+02 5.043e-02 1.230e-03 1.519e+02
33 63156 0 1 0.546 2.111e+02 4.895e-02 1.230.-03 1.517e+02
34 65012 0 1 0.546 2.093e+02 4.758e-02 1.003e-03 1.531e+02
35 66864 0 1 0.545 2.07.*+02 4.627e-02 1.003e-03 1.534e+02
36 68728 0 1 0.546 2.058e+02 4.505e-02 9.612e-04 1.526.+02
37 70576 0 1 0.546 2.041e+02 4.386e-02 9.612.-04 1.474e+02

Table 65. Rosenbrock's Saddle Simple GA Worst Performance by Generation
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Nix
Goen Trials Lost Cony Kntr Online Offline Beat Average

0 2024 0 0 0.506 4.644e402 4.741e-02 7.217e-04 4.644e+02
2 5658 0 0 0.510 3.808e+02 2.7559-02 1.461e-04 2.946.402
3 7502 0 0 0.511 3.580o+02 2.206e-02 1.010e-04 2.688e402
4 9346 0 0 0.514 3.375.402 1.845e-02 1.010e-04 2.471e+02
5 11182 0 0 0.515 3.221e402 1.610e-02 1.OlOe-04 2.287e402
6 13018 0 0 0.517 3.079e402 1.426e-02 1.O10e-04 2.1129402
7 14884 0 0 0.518 2.958e402 1.267e-02 1.010e-04 2.102e+02
8 16726 0 0 0.520 2.853.402 1.143o-02 1.O10e-04 1.959e402
9 18554 0 0 0.520 2.757e+02 1.046e-02 1.Ol0e-04 1.848e+02

10 20380 0 0 0.521 2.683efr02 9.660e-03 1.010e-04 1.836s+02
11 22208 0 0 0.522 2.612.402 8.999e-03 1.Ol0e-04 1.784*402
12 24066 0 0 0.523 2.544.402 8.428e-03 1.O1Oe-04 1.693.402
13 26006 0 0 0.524 2.480.402 7.918e-03 1.O10e-04 1.618.402
14 28002 0 0 0.526 2. 386e+02 6. 960e-03 1.0O10e-04 1.6563e+02
16 31496 0 0 0.527 2. 342e402 6. 5569-03 8. 166e-05 1.6592e+02
17 33348 0 0 0.528 2.307.402 6.199e-03 8.166e-05 1.694.402
18 35178 0 0 0.529 2.273.402 6.886e-03 8.166a-O5 1.548.402
19 37008 0 0 0.529 2.238e+02 5. 599e-03 8.168.-OS 1.529.402
20 38806 0 0 0.529 2.204.402 5.343e-03 8.166.-OS 1.461.402
21 40678 0 0 0.530 2.172e+02 6.108e-03 8.166.-OS 1.445o+02
22 42602 0 0 0.630 2.145.402 4. 8969-03 8.166.-OS 1.457.402
23 44360 0 0 0.530 2.121.402 4.702e-03 8.166o-05 1.430e+02
24 46214 0 0 0.531 2.097.402 4.519e-03 1.603.-OS 1.346e+02
25 48050 0 0 0.532 2.075.402 4.366e-03 1.603.-OS 1.375e402
26 50004 0 0 0.532 2.054.402 4.203e-03 1.603.-OS 1.344.402
27 52000 0 0 0.532 2.012o+02 4.060e-03 1.603.-OS 1.291.402
29 55370 0 0 0.532 1.991.402 3.805e-03 1.603.-OS 1.287.402
30 67218 0 0 0.533 1.972.402 3. 690e-03 1. 603e-06 1. 344e402
31 59062 0 0 0.533 1.963e402 3.679e-03 1.603.-OS 1.336e+02
32 60912 0 0 0.533 1.934e+02 3.475.-03 1.603.-OS 1.290e+02
33 62758 0 0 0.533 1.916.402 3.380e-03 1.603.-OSi 1.231e402
34 64586 0 0 0.633 1.897.402 3. 289.-03 1 .603e-05 1.238e402
35 66420 0 0 0.534 1.880.402 3.203.-03 1.603.-OS 1.244.402
36 68266 0 0 0.534 1.867.402 3. 122e-03 1.603.-OS 1.240.402
37 70118 0 0 0.634 1.862e+02 3.046e-03 1.603.-OS 1.269e+02

Table 66. Rosenbrock's Saddle Simple GA Best Performance by Generation
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Appendix B. MGA Parallel Decomposition Experimental Data.

This appendix contains the raw data from the parallel MGA data distribution per-

formance experiments, including the indexed distribution strategy (Section B.1), the mod-

ified indexed distribution strategy (Section B.2), the interleaved distribution strategy (Sec-

tion B.3), and the block distribution strategy (Section B.4). Each table gives the average

over all applicable experiments of the maximum time spent by any processor in each op-

eration. Note that the "Convert Data Structure" operation includes the time required

to recombine the subpopulations prior to the juxtapositional phase. The "Distribution

Dependent Time" given is the average over all applicable experiments of the maximum

time spent by any processor in the initialization of the population, the primordial phase,

and the data structure conversion. Likewise, the "Total" time is the average over all ap-

plicable experiments of the maximum total execution time of any processor. The data are

summarized and interpreted in Chapter V.

B.1 Indexed Distribution.

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.10e-02 1.83e-18
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 1.64e+01 5.33e-02
Primordial Phase 1.55e+02 3.89e-01

Convert Data Structure 6.18e-01 7.38e-04
Distribution Dependent Time 1.72e+02 3.88e-01

Juxtapositional Phase 7.69e+01 6.73e+00
Other 6.20e-03 2.15e-03
Total 2.49e+02 6.72e+00

Table 67. Indexed Distribution 1-Node Execution Times
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Execution Time

Operation/Phase Mean Standard Deviation
Generate Competitive Template 1.11e-02 3.16e-04

Create Building Blocks 1.00e-03 2.29e-19
Initialize Population 8.69e+00 2.89e-02

Primordial Phase 7.07e+01 2.80e-01
Convert Data Structure 1.08e+01 2.09e-01

Distribution Dependent Time 9.02e+01 4.16e-01
Juxtapositional Phase 8.22e+01 8.60e+00

Other 2.20e-03 4.22e-04
Total 1.63e+02 8.56e+00

Table 68. Indexed Distribution 2-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.92e-01 2.64e-02
Create Building Blocks 1.00e+00 0.00e+00

Initialize Population 1.89e+00 3.01e-04
Primordial Phase 2.19e+00 7.32e-03

Convert Data Structure 5.71e-02 1.13e-03
Distribution Dependent Time 1.91e+00 8.88e-03

Juxtapositional Phase 9.41e-01 9.89e-02
Other 2.95e+00 1.24e+00
Total 1.53e+00 7.63e-02

Table 69. Indexed Distribution 2-Node Speedups

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.11e-02 3.16e-04
Create Building Blocks 1.10e-03 3.16e-04

Initialize Population 4.85e+00 1.56e-02
Primordial Phase 3.10e+01 1.80e-01

Convert Data Structure 1.24e+01 1.72e-01
Distribution Dependent Time 4.82e+01 3.30e-01

Juxtapositional Phase 8.57e+01 5.88e+00
Other 2.40e-03 5.16e-04
Total 1.23e+02 5.84e+00

Table 70. Indexed Distribution 4-Node Execution Times
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Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.92e-01 2.64e-02
Create Building Blocks 9.50e-01 1.58e-01

Initialize Population 3.38e+00 6.14e-04
Primordial Phase 5.00e+00 2.52e-02

Convert Data Structure 4.98e-02 7.16e-04
Distribution Dependent Time 3.56e+00 2.07e-02

Juxtapositional Phase 8.99e-01 7.93e-02
Other 2.73e+00 1.26e+00
Total 2.03e+00 9.36e-02

Table 71. Indexed Distribution 4-Node Speedups

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.12e-02 4.22e-04
Create Building Blocks 1.10e-03 3.16e-04

Initialize Population 2.97e+00 9.23e-03
Primordial Phase 1.38e+01 1.69e-01

Convert Data Structure 1.07e+01 1.76e-01

Distribution Dependent Time 2.74e+01 3.26e-01
Juxtapositional Phase 9.43e+01 1.37e+01

Other 2.70e-03 4.83e-04
Total 1.12e+02 1.36e+01

Table 72. Indexed Distribution 8-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.83e-01 3.51e-02
Create Building Blocks 9.50e-01 1.58e-01

Initialize Population 5.52e+00 1.22e-03
Primordial Phase 1.13e+01 1.27e-01

Convert Data Structure 5.77e-02 9.63e-04
Distribution Dependent Time 6.27e+00 6.87e-02

Juxtapositional Phase 8.28e-01 1.20e-01
Other 2.32e+00 6.96e-01
Total 2.24e+00 2.40e-01

Table 73. Indexed Distribution 8-Node Speedups
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B.2 Modified Indexed Distribution.

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.07e-02 6.75e-04

Create Building Blocks 1.30e-03 4.83e-04
Initialize Population 1.64e+01 5.45e-02

Primordial Phase 1.55e+02 3.78e-01
Convert Data Structure 6.18e-01 5.68e-04

Distribution Dependent Time 1.72e+02 3.75e-01
Juxtapositional Phase 7.69e+01 6.73e+00

Other 5.10e-03 1.37e-03
Total 2.49e+02 6.71e+00

Table 74. Modified Indexed Distribution 1-Node Execution Times

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.12e-02 4.22e-04
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 8.58e+00 2.84e-02
Primordial Phase 6.92e+01 3.92e-01

Convert Data Structure 8.07e+00 4.15e-01
Distribution Dependent Time 8.58e+01 7.47e-01

Juxtapositional Phase 7.97e+01 5.24e+00
Other 2.10e-03 3.16e-04
Total 1.58e+02 5.24e+00

Table 75. Modified Indexed Distribution 2-Node Execution Times
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Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.55e-01 4.72e-02
Create Building Blocks 1.30e+00 4.83e-01

Initialize Population 1.91e+00 3.65e-04
Primordial Phase 2.24e+00 1.15e-02

Convert Data Structure 7.67e-02 4.05e-03
Distribution Dependent Time 2.00e+00 1.66e-02

Juxtapositional Phase 9.64e-01 4.68e-02
Other 2.45e+00 6.85e-01
Total 1.57e+00 3.04e-02

Table 76. Modified Indexed Distribution 2-Node Speedups

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.11e-02 3.16e-04
Create Building Blocks 1.20e-03 4.22e-04
Initialize Population 4.53e+00 1.49e-02

Primordial Phase 2.87e+01 2.90e-01
Convert Data Structure 7.70e+00 3.60e-01

Distribution Dependent Time 4.09e+01 6.25e-01
Juxtapositional Phase 8.35e+01 6.65e+00

Other 2.40e-03 5.16e-04
Total 1.18e+02 6.76e%00

Table 77. Modified Indexed Distribution 4-Node Execution Times

Speedup

Operation/Phase Mean Standard Deviation
Generate Competitive Template 9.64e-01 4.69e-02

Create Building Blocks 1.15e+00 4.74e-01
Initialize Population 3.62e&00 1.01e-03

Primordial Phase 5.40e+00 5.27e-02
Convert Data Structure 8.04e-02 3.89e-03

Distribution Dependent Time 4.20e+00 6.34e-02
Juxtapositional Phase 9.25e-01 9.52e-02

Other 2.15e+00 5.52e-01
Total 2.12e+00 1.22e-01

Table 78. Modified Indexed Distribution 4-Node Speedups
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Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.12e-02 4.22e-04
Create Building Blocks 1.10e-03 3.16e-04

Initialize Population 2.26e+00 7.07e-03
Primordial Phase 1.08e+01 1.61e-01

Convert Data Structure 4.10e+00 2.02e-01
Distribution Dependent Time 1.71e+01 3.52e-01

Juxtapositional Phase 9.67e+01 1.34e+01
Other 2.50e-03 5.27e-04
Total 1.1le+02 1.34e+01

Table 79. Modified Indexed Distribution 8-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.55e-01 4.72e-02
Create Building Blocks 1.25e+00 5.40e-01

Initialize Population 7.26e+00 2.32e-03
Primordial Phase 1.44e+01 2.19e-01

Convert Data Structure 1.51e-01 7.30e-03
Distribution Dependent Time 1.00e+01 2.08e-01

Juxtapositional Phase 8.04e-01 9.50e-02
Other 2.08e+00 6.59e-01
Total 2.27e+00 2.43e-01

Table 80. Modified Indexed Distribution 8-Node Speedups
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B.3 Interleaved Distribution.

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.08e-02 4.22e-04
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 1.65e+01 6.15e-02
Primordial Phase 1.55e+02 5.96e-01

Convert Data Structure 6.20e-01 6.32e-04
Distribution Dependent Time 1.72e+02 6.19e-01

Juxtapositional Phase 8.03e+01 1.58e+01
Other 5.30e-03 1.57e-03
Total 2.53e+02 1.58e+01

Table 81. Interleaved Distribution 1-Node Execution Times

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.10e-02 6.67e-04
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 8.33e+00 2.82e-02
Primordial Phase 7.81e+01 1.68e-01

Convert Data Structure 8.03e-01 1.05e-01
Distribution Dependent Time 8.72e+01 2.21e-01

Juxtapositional Phase 8.12e+01 9.34e+00
Other 2.20e-03 4.22e-04
Total 1.68e+02 9.31e+00

Table 82. Interleaved Distribution 2-Node Execution Times
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Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.84e-01 5.74e-02
Create Building Blocks 1.00e+00 0.00e+00

Initialize Population 1.98e+00 1.7le-03
Primordial Phase 1.99e+00 5.37e-03

Convert Data Structure 7.83e-01 9.36e-02
Distribution Dependent Time 1.98e+00 5.22e-03

Juxtapositional Phase 9.88e-01 1.15e-01
Other 2.45e+00 7.98e-01
Total 1.50e+00 6.20e-02

Table 83. Interleaved Distribution 2-Node Speedups

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.12e-02 4.22e-04
Create Building Blocks 1.20e-03 4.22e-04

Initialize Population 4.26e+00 1.36e-02
Primordial Phase 3.93e+01 1.67e-01

Convert Data Structure 1.43e+00 1.60e-01
Distribution Dependent Time 4.50e+01 2.07e-01

Juxtapositional Phase 8.27e+01 5.75e+00
Other 2.30e-03 4.83e-04
Total 1.27e+02 5.76e+00

Table 84. Interleaved Distribution 4-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.65e-01 4.51e-02
Create Building Blocks 9.00e-01 2.1le-01

Initialize Population 3.87e+00 3.84e-03
Primordial Phase 3.95e+00 1.93e-02

Convert Data Structure 4.38e-01 4.91e-02
Distribution Dependent Time 3.83e+00 2.20e-02

Juxtapositional Phase 9.75e-01 1.94e-01
Other 2.37e+00 7.97e-01
Total 1.99e+00 1.44e-01

Table 85. Interleaved Distribution 4-Node Speedups
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Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.12e-02 4.22e-04
Create Building Blocks 1.30e-03 4.83e-04

Initialize Population 2.22e+00 6.84e-03
Primordial Phase 1.96e+01 1.25e-01

Convert Data Structure 1.56e+00 1.69e-01
Distribution Dependent Time 2.34e+01 2.83e-01

Juxtapositional Phase 8.69e+01 7.97e+00
Other 2.70e-03 4.83e-04
Total 1.10e+02 8.02e+00

Table 86. Interleaved Distribution 8-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.65e-01 4.51e-02
Create Building Blocks 8.50e-01 2.42e-01

Initialize Population 7.41e+00 8.20e-03
Primordial Phase 7.92e+00 5.40e-02

Convert Data Structure 4.00e-01 4.05e-02
Distribution Dependent Time 7.37e+00 8.75e-02

Juxtapositional Phase 9.30e-01 1.92e-01
Other 2.05e+00 7.94e-01
Total 2.31e+00 2.06e-01

Table 87. Interleaved Distribution 8-Node Speedups
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B.4 Block Distribution.

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.10e-02 6.67e-04
Create Building Blocks 1.10e-03 3.16e-04

Initialize Population 1.64e+01 5.59e-02
Primordial Phase 1.55e+02 5.96e-01

Convert Data Structure 6.20e-01 6.75e-04
Distribution Dependent Time 1.72e+02 6.22e-01

Juxtapositional Phase 8.03e+01 1.58e+01
Other 5.80e-03 1.40e-03
Total 2.53e+02 1.58e+01

Table 88. Block Distribution 1-Node Execution Times

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.11e-02 5.68e-04
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 8.30e+00 2.72e-02
Primordial Phase 6.55e+01 2.23e-01

Convert Data Structure 4.70e+00 4.11e-01
Distribution Dependent Time 7.85e+01 5.43e-01

Juxtapositional Phase 8.06e+01 8.66e+00
Other 2.20e-03 4.22e-04
Total 1.55e+02 8.69e+00

Table 89. Block Distribution 2-Node Execution Times
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Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.92e-01 5.36e-02
Create Building Blocks 1.10e+00 3.16e-01

Initialize Population 1.98e+00 4.68e-04
Primordial Phase 2.37e+00 1.01e-02

Convert Data Structure 1.33e-01 1.07e-02
Distribution Dependent Time 2.20e+00 1.72e-02

Juxtapositional Phase 9.96e-01 1.31e-01
Other 2.67e+00 5.44e-01
Total 1.63e+00 7.87e-02

Table 90. Block Distribution 2-Node Speedups

Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.12e-02 4.22e-04
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 4.24e±00 1.34e-02
Primordial Phase 2.89e+01 1.41e-01

Convert Data Structure 8.51e+00 2.47e-01
Distribution Dependent Time 4.16e±01 3.60e-01

Juxtapositional Phase 8.39e+01 6.61e+00
Other 2.10e-03 3.16e-04
Total 1.18e+02 6.68e+00

Table 91. Block Distribution 4-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.82e-01 3.83e-02
Create Building Blocks 1.10e+00 3.16e-01

Initialize Population 3.87e+00 1.64e-03
Primordial Phase 5.38e+00 3.49e-02

Convert Data Structure 7.29e-02 2.16e-03
Distribution Dependent Time 4.14e+00 4.30e-02

Juxtapositional Phase 9.60e-01 1.79e-01
Other 2.82e+00 7.95e-01
Total 2.14e+00 1.53e-01

Table 92. Block Distribution 4-Node Speedups
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Execution Time
Operation/Phase Mean Standard Deviation

Generate Competitive Template 1.13e-02 4.83e-04
Create Building Blocks 1.00e-03 2.29e-19

Initialize Population 2.20e+00 6.72e-03
Primordial Phase 1.20e+01 8.84e-02

Convert Data Structure 5.89e+00 1.52e-01
Distribution Dependent Time 2.01e+01 2.22e-01

Juxtapositional Phase 9.05e+01 1.06e+01
Other 2.70e-03 4.83e-04
Total 1.06e+02 1.07e+01

Table 93. Block Distribution 8-Node Execution Times

Speedup
Operation/Phase Mean Standard Deviation

Generate Competitive Template 9.73e-01 4.27e-02
Create Building Blocks 1.10e+00 3.16e-01

Initialize Population 7.46e+00 3.52e-03
Primordial Phase 1.29e+01 1.03e-01

Convert Data Structure 1.05e-01 2.66e-03
Distribution Dependent Time 8.56e+00 1.06e-01

Juxtapositional Phase 8.92e-01 1.54e-01
Other 2.22e+00 6.62e-01
Total 2.40e+00 2.18e-01

Table 94. Block Distribution 8-Node Speedups
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Appendix C. Premature Convergence Experimental Data.

This appendix contains the raw data from the parallel GA communication strategy

performance experiments, including

"* execution time as a function of population size for each selection strategy and each

sharing strategy for large and small populations (Section C.l), and

"* convergence statistics as a function of population size for each communication strat-

egy for large and small populations (Section C.2).

C.1 Execution Time Results.
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Figure 49. Execution Time - Local Selection Strategies, Small Populations
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Figure 51. Execution Time - Parallel Selection Strategies, Small Populations

12

10 LN- /
PN -8..8

6 7
o

44
S 2

0
80 120 160 200 240 280 320

Population size

Figure 52. Execution Time - No Sharing Strategies, Small Populations

11

10 LS -.-
GS /

89 PS -P-..

S7 8
76 -- / --

6o .. ...- .
6

o 5• 4 /"... .... ... .....
0 4

u
x4 3

2

80 120 160 200 240 280 320
Population size

Figure 53. Execution Time - Sharing Strategies, Small Populations

155



14

12 LC ---GC //

- 10 PC--* .

0 6
-da

o 4 -

W 2

0
80 120 160 200 240 280 320

Population size
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Figure 55. Execution Time - Local Selection Strategies, Large Populations
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Figure 57. Execution Time - Parallel Selection Strategies, Large Populations

100

90 LN

O 80S60 P- -.-.-- .....
70

60 -

504oC. .- .... "--
0 40

0 30
u 20

a

10

0
640 960 1280 1600 1920 2240 2560 2880 3200

Population size
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C.2 Convergence Statistics.

Population Size Best Efficiency Statistic

80 0.175475
120 0.179334
160 0.034127
200 0.275756
240 0.417403
280 0.335744
320 0.375141

Table 95. Convergence - LN Strategy, Small Population Sizes

Population Size Best Efficiency Statistic
640 0.735421
960 0.690678

1280 0.818774
1600 0.837974
1920 0.773545
2240 0.778448
2560 0.759530
2880 0.836116
3200 0.855363

Table 96. Convergence - LN Strategy, Large Population Sizes

Fopulation Size Best Efficiency Statistic
80 0.000055

120 0.005281
160 0.000000
200 0.006654
240 0.000932
280 0.102384
320 0.032443

Table 97. Convergence - LS Strategy, Small Population Sizes
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Population Size Best Efficiency Statistic
640 0.270970
960 0.165808

1280 0.343118
1600 0.448728
1920 0.211212
2240 0.987014
2560 0.831621
2880 0.945857
3200 0.986169

Table 98. Convergence - LS Strategy, Large Population Sizes

Population Size Best Efficiency Statistic
80 0.176258

120 0.204836
160 0.368535
200 0.338833
240 0.361256
280 0.389871
320 0.492369

Table 99. Convergence - LC Strategy, Small Population Sizes

Population Size Best Efficiency Statistic
640 0.641501
960 0.788789

1280 0.751156
1600 0.755642
1920 0.780675
2240 0.875257
2560 0.821995
2880 0.766922
3200 0.832032

Table 100. Convergence - LC Strategy, Large Population Sizes
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Population Size Best Efficiency Statistic

80 0.000000
120 0.000000
160 0.086943
200 0.232566
240 0.330757

280 0.389171
320 0.417160

Table 101. Convergence - GN Strategy, Small Population Sizes

Population Size Best Efficiency Statistic

640 0.600676
960 0.668768

1280 0.768950
1600 0.689089
1920 0.774709

2240 0.715834
2560 0.767101
2880 0.595963

3200 0.776001

Table 102. Convergence - GN Strategy, Large Population Sizes

Population Size Best Efficiency Statistic

80 0.003117
120 0.000000
160 0.001752
200 0.001740
240 0.031254
280 0.228590
320 0.115155

Table 103. Convergence - GS Strategy, Small Population Sizes
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Population Size Best Efficiency Statistic
640 0.403861
960 0.152572

1280 0.380230
1600 0.213462
1920 0.891523
2240 0.675793
2560 0.880311
2880 0.494462
3200 0.725887

Table 104. Convergence - GS Strategy, Large Population Sizes

Population Size Best Efficiency Statistic
80 0.009799

120 0.024899
160 0.299083
200 0.221736
240 0.442417
280 0.524813
320 0.580191

Table 105. Convergence - GC Strategy, Small Population Sizes

Population Size Best Efficiency Statistic
640 0.788158
960 0.711784

1280 0.857189
1600 0.694918
1920 0.762510
2240 0.834600
2560 0.886936
2880 0.875530
3200 0.827665

Table 106. Convergence - GC Strategy, Large Population Sizes
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Population Size Best Efficiency Statistic
80 0.002448

120 0.000000
160 0.020023
200 0.211456
240 0.242646
280 0.333400
320 0.430564

Table 107. Convergence - PN Strategy, Small Population Sizes

Population Size Best Efficiency Statistic
640 0.505046
960 0.492894

1280 0.291565
1600 0.462527
1920 0.635694
2240 0.489370
2560 0.536974
2880 0.557232
3200 0.658160

Table 108. Convergence - PN Strategy, Large Population Sizes

Population Size Best Efficiency Statistic
80 0.000688

120 0.000563
160 0.000570
200 0.000030
240 0.002229
280 0.018840
320 0.003151

Table 109. Convergence - PS Strategy, Small Population Sizes
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Population Size Best Efficiency Statistic
640 0.209377
960 0.173146

1280 0.328435
1600 0.483307
1920 0.238900
2240 0.395858
2560 0.253727
2880 0.262649
3200 0.244536

Table 110. Convergence - PS Strategy, Large Population Sizes

Population Size Best Efficiency Statistic
80 0.002297

120 0.217904
160 0.133283
200 0.139163
240 0.183101
280 0.249313
320 0.395569

Table 111. Convergence - PC Strategy, Small Population Sizes

Population Size Best Efficiency Statistic
640 0.554424
960 0.570333

1280 0.504046
1600 0.581797
1920 0.537362
2240 0.675596
2560 0.710481
2880 0.686433
3200 0.572514

Table 112. Convergence - PC Strategy, Large Population Sizes
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